Neurodevelopmental disorders (NDDs) can severely impact functioning yet effective treatments are limited. Greater insight into the neurobiology underlying NDDs is critical to the development of successful treatments. Using a genetics-first approach, we investigated the potential of advanced diffusion-weighted imaging (DWI) techniques to characterize the neural microstructure unique to neurofibromatosis type 1 (NF1) and Noonan syndrome (NS).
View Article and Find Full Text PDFNoonan syndrome and neurofibromatosis type 1 are genetic conditions linked to pathogenic variants in genes of the Ras-mitogen-activated protein kinase signalling pathway. Both conditions hyper-activate signalling of the Ras-mitogen-activated protein kinase pathway and exhibit a high prevalence of neuropsychiatric disorders. Further, animal models of Noonan syndrome and neurofibromatosis type 1 and human imaging studies show white matter abnormalities in both conditions.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
September 2024
Background: RASopathies are a group of disorders characterized by pathogenic mutations in the Ras/mitogen-activated protein kinase (Ras/MAPK) signaling pathway. Distinct pathogenic variants in genes encoding proteins in the Ras/MAPK pathway cause Noonan syndrome (NS) and neurofibromatosis type 1 (NF1), which are associated with increased risk for autism spectrum disorder and attention-deficit/hyperactivity disorder.
Methods: This study examined the effect of RASopathies (NS and NF1) on human neuroanatomy, specifically on surface area (SA), cortical thickness (CT), and subcortical volumes.
The RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: (1) How Ras-MAPK activating variants of PTPN11/SOS1 protein-coding genes affect brain anatomy.
View Article and Find Full Text PDFThe RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: 1.
View Article and Find Full Text PDFWe examined whether PTPN11 mutations affect the white matter connectivity of the developing human brain. Germline activating mutations to the PTPN11 gene cause overactivation of the Ras-Mitogen-Activated Protein Kinase pathway. Activating mutations cause Noonan syndrome (NS), a developmental disorder associated with hyperactivity and cognitive weakness in attention, executive function, and memory.
View Article and Find Full Text PDFThis investigation examined whether the variation of cerebral structure is associated with genetic or environmental factors in children with autism spectrum disorder (ASD) compared with typically developing (TD) controls. T1-weighted magnetic resonance imaging scans were obtained from twin pairs (aged 6-15 years) in which at least one twin was diagnosed with ASD or both were TD. Good quality data were available from 30 ASD, 18 discordant, and 34 TD pairs (n = 164).
View Article and Find Full Text PDFBackground: Corticostriatal circuits (CSC) have been implicated in the presentation of some restricted and repetitive behaviours (RRBs) in children with autism-spectrum disorder (ASD), and preliminary evidence suggests that disruptions in these pathways may be associated with differences in genetic and environmental influences on brain development. The objective of this investigation was to examine the impact of genetic and environmental factors on CSC regions in twins with and without ASD and to evaluate their relationship with the severity of RRBs.
Methods: We obtained T1-weighted MRIs from same-sex monozygotic and dizygotic twin pairs, aged 6–15 years.
Atypical growth patterns of the brain have been previously reported in autism spectrum disorder (ASD) but these alterations are heterogeneous across individuals, which may be associated with the variable effects of genetic and environmental influences on brain development. Monozygotic (MZ) and dizygotic (DZ) twin pairs with and without ASD (aged 6-15 years) were recruited to participate in this study. T1-weighted MRIs (n = 164) were processed with FreeSurfer to evaluate structural brain measures.
View Article and Find Full Text PDFAims/hypothesis: Prior studies suggest white matter growth is reduced and white matter microstructure is altered in the brains of young children with type 1 diabetes when compared with brains of non-diabetic children, due in part to adverse effects of hyperglycaemia. This longitudinal observational study examines whether dysglycaemia alters the developmental trajectory of white matter microstructure over time in young children with type 1 diabetes.
Methods: One hundred and eighteen children, aged 4 to <10 years old with type 1 diabetes and 58 age-matched, non-diabetic children were studied at baseline and 18 months, at five Diabetes Research in Children Network clinical centres.
Prog Neuropsychopharmacol Biol Psychiatry
February 2018
Multiple lines of research have reported thalamic abnormalities in individuals with autism spectrum disorder (ASD) that are associated with social communication impairments (SCI), restricted and repetitive behaviors (RRB), or sensory processing abnormalities (SPA). Thus, the thalamus may represent a common neurobiological structure that is shared across symptom domains in ASD. Same-sex monozygotic (MZ) and dizygotic (DZ) twin pairs with and without ASD underwent cognitive/behavioral evaluation and magnetic resonance imaging to assess the thalamus.
View Article and Find Full Text PDFBackground: The insula is involved in interoceptive processing, emotion awareness, and attention to salient stimuli. Research suggests that these functions are specific-albeit overlapping-within insula subdivisions. Additional studies also imply that sexual dimorphism and different rates of development occur within these subdivisions in youth.
View Article and Find Full Text PDFFew studies have investigated developmental strengths and weaknesses within the cognitive profile of children and adolescents with fragile X syndrome (FXS), a single-gene cause of inherited intellectual impairment. With a prospective longitudinal design and using normalized raw scores (Z scores) to circumvent floor effects, we measured cognitive functioning of 184 children and adolescents with FXS (ages 6 to 16) using the Wechsler Scale of Intelligence for Children on one to three occasions for each participant. Participants with FXS received lower raw scores relative to the Wechsler Scale of Intelligence for Children normative sample across the developmental period.
View Article and Find Full Text PDFFragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
April 2016
Morphometric investigations of brain volumes in Williams syndrome (WS) consistently show significant reductions in gray matter volume compared to controls. Cortical thickness (CT) and surface area (SA) are two constituent parts of cortical gray matter volume that are considered genetically distinguishable features of brain morphology. Yet, little is known about the independent contribution of cortical CT and SA to these volumetric differences in WS.
View Article and Find Full Text PDFObjective: Sex differences in the manifestation of psychiatric disorders, including anxiety disorders, are among the most prominent findings in psychiatry. The study of Turner syndrome (TS), caused by X-monosomy, has the potential to reveal mechanisms that underline male/female differences in neuropsychiatric disorders. The amygdala has been implicated in numerous neuropsychiatric disorders.
View Article and Find Full Text PDFEarly-onset type 1 diabetes may affect the developing brain during a critical window of rapid brain maturation. Structural MRI was performed on 141 children with diabetes (4-10 years of age at study entry) and 69 age-matched control subjects at two time points spaced 18 months apart. For the children with diabetes, the mean (±SD) HbA1c level was 7.
View Article and Find Full Text PDFCoordinated variations in brain morphology (e.g., cortical thickness) across individuals have been widely used to infer large-scale population brain networks.
View Article and Find Full Text PDFBackground: Fragile-X syndrome (FXS) is a neurodevelopmental disorder associated with intellectual disability and neurobiological abnormalities including white matter microstructural differences. White matter differences have been found relative to neurotypical individuals.
Aims: To examine whether FXS white matter differences are related specifically to FXS or more generally to the presence of intellectual disability.
Purpose: To identify whether patients with chronic fatigue syndrome (CFS) have differences in gross brain structure, microscopic structure, or brain perfusion that may explain their symptoms.
Materials And Methods: Fifteen patients with CFS were identified by means of retrospective review with an institutional review board-approved waiver of consent and waiver of authorization. Fourteen age- and sex-matched control subjects provided informed consent in accordance with the institutional review board and HIPAA.
Am J Med Genet B Neuropsychiatr Genet
September 2014
Turner syndrome (TS) arises from partial or complete absence of the X-chromosome in females. Girls with TS show deficits in visual-spatial skills as well as reduced brain volume and surface area in the parietal cortex which supports these cognitive functions. Thus, measuring the developmental trajectory of the parietal cortex and the associated visual-spatial cognition in TS may provide novel insights into critical brain-behavior associations.
View Article and Find Full Text PDFObjective: To investigate whether type 1 diabetes affects white matter (WM) structure in a large sample of young children.
Research Design And Methods: Children (ages 4 to <10 years) with type 1 diabetes (n = 127) and age-matched nondiabetic control subjects (n = 67) had diffusion weighted magnetic resonance imaging scans in this multisite neuroimaging study. Participants with type 1 diabetes were assessed for HbA1c history and lifetime adverse events, and glucose levels were monitored using a continuous glucose monitor (CGM) device and standardized measures of cognition.
Individuals with fragile X syndrome (FXS) exhibit frontal lobe-associated cognitive and behavioral deficits, including impaired general cognitive abilities, perseverative behaviors, and social difficulties. Neural signals related to these functions are communicated through frontostriatal circuits, which connect with distinct regions of the caudate nucleus (CN). Enlargement of the CN is the most robust and reproduced neuroanatomical abnormality in FXS, but very little is known on how this affects behavioral/cognitive outcomes in this condition.
View Article and Find Full Text PDFThere is increasing evidence that genomic imprinting, a process by which certain genes are expressed in a parent-of-origin-specific manner, can influence neurogenetic and psychiatric manifestations. While some data suggest possible imprinting effects of the X chromosome on physical and cognitive characteristics in humans, there is no compelling evidence that X-linked imprinting affects brain morphology. To address this issue, we investigated regional cortical volume, thickness, and surface area in 27 healthy controls and 40 prepubescent girls with Turner syndrome (TS), a condition caused by the absence of one X chromosome.
View Article and Find Full Text PDFDevelopmental dyslexia is a neurobiological deficit characterized by persistent difficulty in learning to read in children and adults who otherwise possess normal intelligence. Functional and structural connectivity data suggest that developmental dyslexia could be a disconnection syndrome. However, whether abnormalities in connectivity exist in beginning readers at-risk for reading difficulties is unknown.
View Article and Find Full Text PDF