Plastics, when entering the environment, are immediately colonised by microorganisms. This modifies their physico-chemical properties as well as their transport and fate in natural ecosystems, but whom pioneers this colonisation in marine ecosystems? Previous studies have focused on microbial communities that develop on plastics after relatively long incubation periods (i.e.
View Article and Find Full Text PDFHow oligotrophic marine cyanobacteria position themselves in the water column is currently unknown. The current paradigm is that these organisms avoid sinking due to their reduced size and passive drift within currents. Here, we show that one in four picocyanobacteria encode a type IV pilus which allows these organisms to increase drag and remain suspended at optimal positions in the water column, as well as evade predation by grazers.
View Article and Find Full Text PDFPlastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere.
View Article and Find Full Text PDF