Publications by authors named "Mira Barshai"

G-quadruplexes are non-B-DNA structures that form in the genome facilitated by Hoogsteen bonds between guanines in single or multiple strands of DNA. The functions of G-quadruplexes are linked to various molecular and disease phenotypes, and thus researchers are interested in measuring G-quadruplex formation genome-wide. Experimentally measuring G-quadruplexes is a long and laborious process.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are nucleic acid secondary structures that form within guanine-rich DNA or RNA sequences. G4 formation can affect chromatin architecture and gene regulation, and has been associated with genomic instability, genetic diseases, and cancer progression. The experimental data produced by the G4-seq experiment provides unprecedented details on G4 formation in the genome.

View Article and Find Full Text PDF

Single-stranded DNA (ssDNA) containing four guanine repeats can form G-quadruplex (G4) structures. While cellular proteins and small molecules can bind G4s, it has been difficult to broadly assess their DNA-binding specificity. Here, we use custom DNA microarrays to examine the binding specificities of proteins, small molecules, and antibodies across ∼15,000 potential G4 structures.

View Article and Find Full Text PDF