Publications by authors named "Mir M Khalid"

All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication.

View Article and Find Full Text PDF

As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor (ACE2-OE) that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing.

View Article and Find Full Text PDF

Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors.

View Article and Find Full Text PDF

The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay.

View Article and Find Full Text PDF

The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-) protein into ribonucleoprotein particles (RNPs), 38±10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to mutant proteins binding different nucleic acids in an assay for RNP formation, and by examining mutant proteins in a viral assembly assay.

View Article and Find Full Text PDF

Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) causes liver disease, affecting millions. Even though we have effective antivirals that cure HCV, they cannot stop terminal liver disease. We used an adult stem cell-derived liver organoid system to understand how HCV infection leads to the progression of terminal liver disease.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune evasion due to antigenic shift. Recent recombinants XBB and XBB.1.

View Article and Find Full Text PDF

Recovery from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mechanisms counteracting antibody-mediated immunity is therefore needed.

View Article and Find Full Text PDF

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb).

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how the airway epithelium responds to SARS-CoV-2 and its variants, using airway organoids from 20 different subjects to better understand infection mechanisms.* -
  • Tetraspanin-8 (TSPAN8) was identified as a key factor that enhances SARS-CoV-2 infection, working independently of the ACE2-Spike protein interaction.* -
  • Although Delta and Omicron variants showed lower infection rates than the original virus, they still altered the epithelial response, indicating potential new targets for COVID-19 treatments with TSPAN8-blocking antibodies.*
View Article and Find Full Text PDF

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb).

View Article and Find Full Text PDF

Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1).

View Article and Find Full Text PDF

As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that accurately recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.

View Article and Find Full Text PDF
Article Synopsis
  • - Inhibitors of BET proteins might seem like a good option for preventing SARS-CoV-2 because they lower levels of ACE2, but this strategy could backfire.
  • - Using BET inhibitors increases the severity of SARS-CoV-2 infections by reducing critical antiviral responses and interferon production, potentially leading to higher viral replication and mortality in infected cells and mice.
  • - The envelope (E) protein of SARS-CoV-2 has evolved to suppress interferon responses by targeting BET proteins, suggesting that treating with BET inhibitors could worsen outcomes instead of helping.
View Article and Find Full Text PDF

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic.

View Article and Find Full Text PDF

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there are limited data comparing vaccine- and infection-induced neutralizing Abs (nAbs) against COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied neutralizing immunity against Delta and Omicron variants of SARS-CoV-2 by analyzing 259 samples from 128 vaccinated individuals using virus-like particle (VLP) and live virus assays.
  • After Delta breakthrough infections, individuals showed a much higher increase in antibody levels against the wild type (WT) strain compared to Omicron infections, which showed minimal increase.
  • The findings indicate that Omicron breakthrough infections are less effective in boosting immunity than Delta infections, likely due to more mild or asymptomatic cases, which could lead to lower protection against future infections or variants.
View Article and Find Full Text PDF

Complement activation plays a critical role in the pathogenesis of Guillain-Barré syndrome (GBS), a debilitating immune-mediated neuropathy. Mannose-binding lectin (MBL) is a complement activation factor of lectin pathway which as genetic host factor may influence the susceptibility or severity of GBS. We investigated the frequency of MBL2 promoter (- 550H/L and - 221X/Y) and functional region (exon 1 A/O) polymorphisms and their association with disease susceptibility, clinical features and serum MBL among GBS patients (n = 300) and healthy controls (n = 300) in Bangladesh.

View Article and Find Full Text PDF

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease , Omicron infection causes less severe disease, mostly upper respiratory symptoms . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic.

View Article and Find Full Text PDF

Efforts to determine why new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants demonstrate improved fitness have been limited to analyzing mutations in the spike (S) protein with the use of S-pseudotyped particles. In this study, we show that SARS-CoV-2 virus-like particles (SC2-VLPs) can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and at multiple steps in the viral life cycle. In SC2-VLPs, four nucleocapsid (N) mutations found universally in more-transmissible variants independently increased messenger RNA delivery and expression ~10-fold, and in a reverse genetics model, the serine-202→arginine (S202R) and arginine-203→methionine (R203M) mutations each produced >50 times as much virus.

View Article and Find Full Text PDF

The molecular events that drive hepatitis B virus (HBV)-mediated transformation and tumorigenesis have remained largely unclear, due to the absence of a relevant primary model system. Here we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. We first describe a primary ex vivo HBV-infection model derived from healthy donor liver organoids after challenge with recombinant virus or HBV-infected patient serum.

View Article and Find Full Text PDF

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.

View Article and Find Full Text PDF