Publications by authors named "Mir Jalil Razavi"

The design and optimization of bone scaffolds are critical for the success of bone tissue engineering (BTE) applications. This review paper provides a comprehensive analysis of computational optimization methods for bone scaffold architecture, focusing on the balance between mechanical stability, biological compatibility, and manufacturability. Finite element method (FEM), computational fluid dynamics (CFD), and various optimization algorithms are discussed for their roles in simulating and refining scaffold designs.

View Article and Find Full Text PDF

Finding the stiffness map of biological tissues is of great importance in evaluating their healthy or pathological conditions. However, due to the heterogeneity and anisotropy of biological fibrous tissues, this task presents challenges and significant uncertainty when characterized only by single-mode loading experiments. In this study, we propose a new theoretical framework to map the stiffness landscape of fibrous tissues, specifically focusing on brain white matter tissue.

View Article and Find Full Text PDF

The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations.

View Article and Find Full Text PDF

The human brain development experiences a complex evolving cortical folding from a smooth surface to a convoluted ensemble of folds. Computational modeling of brain development has played an essential role in better understanding the process of cortical folding, but still leaves many questions to be answered. A major challenge faced by computational models is how to create massive brain developmental simulations with affordable computational sources to complement neuroimaging data and provide reliable predictions for brain folding.

View Article and Find Full Text PDF

Bone tissue engineering has been recognized as a promising strategy to repair or replace damaged bone tissues. The mechanical properties of bone scaffolds play a critical role in successful bone regeneration, as it is essential to match the mechanical properties of the scaffold with the surrounding bone tissue. In this study, we investigated the effects of fused deposition modeling (FDM) process parameters, including printing speed, printing temperature, and layer thickness, on the compressive viscoelastic properties of polylactic acid (PLA) scaffolds.

View Article and Find Full Text PDF

Cerebral cortex development undergoes a variety of processes, which provide valuable information for the study of the developmental mechanism of cortical folding as well as its relationship to brain structural architectures and brain functions. Despite the variability in the anatomy-function relationship on the higher-order cortex, recent studies have succeeded in identifying typical cortical landmarks, such as sulcal pits, that bestow specific functional and cognitive patterns and remain invariant across subjects and ages with their invariance being related to a gene-mediated proto-map. Inspired by the success of these studies, we aim in this study at defining and identifying novel cortical landmarks, termed gyral peaks, which are the local highest foci on gyri.

View Article and Find Full Text PDF

Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced.

View Article and Find Full Text PDF

Polymeric bone scaffolds are supposed to temporarily bear the external mechanical forces applied to the injured area. The implanted scaffolds should satisfy both mechanical and cell-proliferation requirements. In this study, to design an optimum scaffold structure from mechanical and cell growth perspectives, a new scaffold structure named MFCC (Modified Face Centered Cubic) is introduced, which is based on the Face Centered Cubic (FCC) arrangement of spherical pores.

View Article and Find Full Text PDF

Chronological skin aging is a complex process that is controlled by numerous intrinsic and extrinsic factors. One major factor is the gradual degradation of the dermal collagen fiber network. As a step toward understanding the mechanistic importance of dermal tissue in the process of aging, this study employs analytical and multiscale computational models to elucidate the effect of collagen fiber bundle disintegration on the mechanical properties and topography of skin.

View Article and Find Full Text PDF

The 3-hinge gyral folding is the conjunction of gyrus crest lines from three different orientations. Previous studies have not explored the possible mechanisms of formation of such 3-hinge gyri, which are preserved across species in primate brains. We develop a biomechanical model to mimic the formation of 3-hinge patterns on a real brain and determine how special types of 3-hinge patterns form in certain areas of the model.

View Article and Find Full Text PDF

Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by systematically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model.

View Article and Find Full Text PDF

Electrospun fibrous mats, characterized by their large surface-to-volume ratios, have unique and beneficial properties for various applications. The micro or nanoscale architectures of these structures significantly affects the mechanical properties of the material. The lack of knowledge for predicting the mechanical behavior of electrospun fibrous mats may prevent applications utilizing the se mats from reaching their full potential.

View Article and Find Full Text PDF

One of the associated factors that controls the performance of a triboelectric generator (TEG) is the mechanical deformation of the dielectric layer. Therefore, a good contact model can be a prominent tool to find a more realistic and efficient way of determining the relationships between the contact and electrical output of the generator. In this study, experiments are conducted on a vertical contact mode triboelectric generator under an MTS machine.

View Article and Find Full Text PDF

Comparison and integration of neuroimaging data from different brains and populations are fundamental in neuroscience. Over the past decades, the neuroimaging field has largely depended on image registration to compare and integrate neuroimaging data from individuals in a common reference space, with a basic assumption that the brains are similar. However, the intrinsic neuroanatomical complexity and huge interindividual cortical folding variation remain underexplored.

View Article and Find Full Text PDF

Recent studies have shown that quantitative description of gyral shape patterns offers a novel window to examine the relationship between brain structure and function. Along this research line, this paper examines a unique and interesting type of cortical gyral region where 3 different gyral crests meet, termed 3-hinge gyral region. We extracted 3-hinge gyral regions in macaque/chimpanzee/human brains, quantified and compared the relevant DTI-derived fiber densities in 3-hinge and 2-hinge gyral regions.

View Article and Find Full Text PDF

Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood.

View Article and Find Full Text PDF

There exist many methods for processing of materials: extrusion, injection molding, fibers spinning, 3D printing, to name a few. In most cases, materials with a static, fixed shape are produced. However, numerous advanced applications require customized elements with reconfigurable shape.

View Article and Find Full Text PDF

Cortical folding, or convolution of the brain, is a vital process in mammals that causes the brain to have a wrinkled appearance. The existence of different types of prenatal solid tumors may alter this complex phenomenon and cause severe brain disorders. Here we interpret the effects of a growing solid tumor on the cortical folding in the fetal brain by virtue of theoretical analyses and computational modeling.

View Article and Find Full Text PDF

Mammalian cerebral cortices are characterized by elaborate convolutions. Radial convolutions exhibit homology across primate species and generally are easily identified in individuals of the same species. In contrast, circumferential convolutions vary across species as well as individuals of the same species.

View Article and Find Full Text PDF

As a significant type of cerebral cortical convolution pattern, the gyrus is widely preserved across species. Although many hypotheses have been proposed to study the underlying mechanisms of gyrus formation, it is currently still far from clear which factors contribute to the regulation of consistent gyrus formation. In this paper, we employ a joint analysis scheme of experimental data and computational modeling to investigate the fundamental mechanism of gyrus formation.

View Article and Find Full Text PDF

Cortical folding pattern analysis is very important to understand brain organization and development. Since previous studies mostly focus on human brain cortex, the regularity and variability of cortical folding patterns across primate brains (macaques, chimpanzees and human) remain largely unknown. This paper presents a novel computational framework to identify common or unique gyral folding patterns in macaque, chimpanzee and human brains using magnetic resonance imaging (MRI) data.

View Article and Find Full Text PDF

Surface and interfacial creases induced by biological growth are common types of instability in soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial creases as well as their morphological evolution in a growing bilayer soft tube within a confined environment. Critical growth ratios for triggering surface and interfacial creases are investigated both analytically and numerically.

View Article and Find Full Text PDF

Creasing in soft polymeric films is a result of substantial compressive stresses that trigger instability beyond a critical strain and have been directly related to failure mechanisms in different materials. However, it has been shown that programming these instabilities into soft materials can lead to new applications, such as particle sorting, deformable capillaries, and stimuli-responsive interfaces. In this work, we present a method for fabricating reproducible nanoscale surface instabilities using reactive microcontacting printing (μCP) on activated ester polymer brush layers of poly(pentafluorophenyl acrylate).

View Article and Find Full Text PDF

Deciphering mysteries of the structure-function relationship in cortical folding has emerged as the cynosure of recent research on brain. Understanding the mechanism of convolution patterns can provide useful insight into the normal and pathological brain function. However, despite decades of speculation and endeavors the underlying mechanism of the brain folding process remains poorly understood.

View Article and Find Full Text PDF