Publications by authors named "Mir Hussain Nawaz"

In the original version of this Article, extraneous text not belonging to the article was accidentally appended to end of the first paragraph of the discussion. This error has now been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the 'Warburg effect'. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis.

View Article and Find Full Text PDF

Hundreds of non-proteinogenic (np) amino acids (AA) are found in plants and can in principle enter human protein synthesis through foods. While aminoacyl-tRNA synthetase (AARS) editing potentially provides a mechanism to reject np AAs, some have pathological associations. Co-crystal structures show that vegetable-sourced azetidine-2-carboxylic acid (Aze), a dual mimic of proline and alanine, is activated by both human prolyl- and alanyl-tRNA synthetases.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease type 2D (CMT2D) is a dominantly inherited peripheral neuropathy caused by missense mutations in the glycyl-tRNA synthetase gene (GARS). In addition to GARS, mutations in three other tRNA synthetase genes cause similar neuropathies, although the underlying mechanisms are not fully understood. To address this, we generated transgenic mice that ubiquitously over-express wild-type GARS and crossed them to two dominant mouse models of CMT2D to distinguish loss-of-function and gain-of-function mechanisms.

View Article and Find Full Text PDF

The toxicity of mistranslation of serine for alanine appears to be universal, and is prevented in part by the editing activities of alanyl-tRNA synthetases (AlaRSs), which remove serine from mischarged tRNA(Ala). The problem of serine mistranslation is so acute that free-standing, genome-encoded fragments of the editing domain of AlaRSs are found throughout evolution. These AlaXps are thought to provide functional redundancy of editing.

View Article and Find Full Text PDF

The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains.

View Article and Find Full Text PDF

Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain.

View Article and Find Full Text PDF