Publications by authors named "Mir Hadi Razeghi-Kondelaji"

Purpose: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2 window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney.

Procedures: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3 chromosome inherited from Brown Norway, SS.

View Article and Find Full Text PDF

Introduction: Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models.

Methods: PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery.

View Article and Find Full Text PDF

Objectives: Human Papillomavirus (HPV)-negative head and neck cancer (HNC) is an aggressive malignancy with a poor prognosis. To improve outcomes, we developed a novel liposomal targeting system embedded with 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a chlorin-based photosensitizer. Upon exposure to 660 nm light, HPPH phototriggering generates reactive oxygen species.

View Article and Find Full Text PDF

To develop a dynamic in vivo near-infrared (NIR) fluorescence imaging assay to quantify sequential changes in lung vascular permeability-surface area product (PS) in rodents. Dynamic NIR imaging methods for determining lung vascular permeability-surface area product were developed and tested on non-irradiated and 13 Gy irradiated rats with/without treatment with lisinopril, a radiation mitigator. A physiologically-based pharmacokinetic (PBPK) model of indocyanine green (ICG) pulmonary disposition was applied to in vivo imaging data and PS was estimated.

View Article and Find Full Text PDF