Publications by authors named "Miquel L Alomar"

Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology.

View Article and Find Full Text PDF

Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities.

View Article and Find Full Text PDF

Minimal hardware implementations able to cope with the processing of large amounts of data in reasonable times are highly desired in our information-driven society. In this work we review the application of stochastic computing to probabilistic-based pattern-recognition analysis of huge database sets. The proposed technique consists in the hardware implementation of a parallel architecture implementing a similarity search of data with respect to different pre-stored categories.

View Article and Find Full Text PDF

This paper presents a new methodology for the hardware implementation of neural networks (NNs) based on probabilistic laws. The proposed encoding scheme circumvents the limitations of classical stochastic computing (based on unipolar or bipolar encoding) extending the representation range to any real number using the ratio of two bipolar-encoded pulsed signals. Furthermore, the novel approach presents practically a total noise-immunity capability due to its specific codification.

View Article and Find Full Text PDF