The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium T3, and additionally plasticized by different concentrations of polyglycerol.
View Article and Find Full Text PDFThe antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%).
View Article and Find Full Text PDFThe TiO based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5‑aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO powder and optical properties of CTC was presented.
View Article and Find Full Text PDFThe aim of this study was to develop dextran-based edible films plasticized by sorbitol. In order to optimise the film-forming formulation, response surface methodology was used. The influence of dextran and sorbitol concentration on the mechanical and water vapour barrier properties of obtained films was investigated.
View Article and Find Full Text PDFThe interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores.
View Article and Find Full Text PDFSugar beet pulp (SBP) and molasses, as an agro industrial waste material, are produced in large amounts annually. Thus, a major challenge nowadays is to develop procedures that could increase the value of the generated waste. In this study, SBP as a support for cell immobilization and molasses as a source of nutrients were used for a dextransucrase (DS) production by Leuconostoc mesenteroides T3.
View Article and Find Full Text PDFThis study was aimed to highlight the possibility of cotton fabric impregnation with silver nanoparticles synthesized by dextran isolated from Leuconostoc mesenteroides T3 in order to obtain antimicrobial properties. The fabrication of dextran was proved by FTIR spectroscopy. Particle sizes of synthesized dextran and silver nanoparticles were measured by dynamic light scattering method.
View Article and Find Full Text PDF