Organoids are 3D biological models that recapitulate the complex structures and functions of human organs. Despite the rapid growth in the generation of organoids, in vitro assay tools are still limited to 2D forms. Thus, a comprehensive and continuous functional evaluation of the electrogenic organoids remains a challenge.
View Article and Find Full Text PDFClin Exp Vaccine Res
April 2024
The coronavirus disease 2019 (COVID-19) vaccine was developed to provide immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first reported in 2019. The vaccine has proven to be effective in reducing severity and mortality and preventing infection. Henoch-Schönlein purpura is an autoimmune vasculitis (immunoglobulin A vasculitis).
View Article and Find Full Text PDFDuring in vitro culture, human pluripotent stem cells (hPSCs) often acquire survival advantages characterized by decreased susceptibility to mitochondrial cell death, known as "culture adaptation." This adaptation is associated with genetic and epigenetic abnormalities, including TP53 mutations, copy number variations, trisomy, and methylation changes. Understanding the molecular mechanisms underlying this acquired survival advantage is crucial for safe hPSC-based cell therapies.
View Article and Find Full Text PDFIt was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their K values ranged from 0.
View Article and Find Full Text PDFConcerns about foodborne illnesses caused by Kudoa septempunctata are steadily growing, but reports of K. septempunctata in clinical and food specimens related to food poisoning in Korea are limited. This study aimed to genetically identify K.
View Article and Find Full Text PDFTelomeric repeat binding factor 1 (TRF1) plays an essential role in maintaining telomere length. Here, we established TRF1-knockout human pluripotent stem cells (hPSCs; hTRF1-KO) using the CRISPR/Cas9 technology. The hTRF1-KO cell lines expressed pluripotency markers and demonstrated a normal karyotype (46, XX) and DNA profile.
View Article and Find Full Text PDFAmphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration.
View Article and Find Full Text PDFBrain organoids are valuable research models for human development and disease since they mimic the various cell compositions and structures of the human brain; however, they have challenges in presenting aging phenotypes for degenerative diseases. This study analyzed the association between aging and the gut metabolite trimethylamine -oxide (TMAO), which is highly found in the midbrain of elderly and Parkinson's disease (PD) patients. TMAO treatment in midbrain organoid induced aging-associated molecular changes, including increased senescence marker expression (), p53 accumulation, and epigenetic alterations.
View Article and Find Full Text PDF() is a mutation in chickens that extends black (eumelanin) pigmentation in normally brown or red (pheomelanin) areas, thus affecting multiple within-feather patterns [J. W. Moore, J.
View Article and Find Full Text PDFHuman pluripotent stem cell (hPSC)-derived organoids and cells have similar characteristics to human organs and tissues. Thus, in vitro human organoids and cells serve as a superior alternative to conventional cell lines and animal models in drug development and regenerative medicine. For a simple and reproducible analysis of the quality of organoids and cells to compensate for the shortcomings of existing experimental validation studies, a quantitative evaluation method should be developed.
View Article and Find Full Text PDFAdvanced technologies are required for generating human intestinal epithelial cells (hIECs) harboring cellular diversity and functionalities to predict oral drug absorption in humans and study normal intestinal epithelial physiology. We developed a reproducible two-step protocol to induce human pluripotent stem cells to differentiate into highly expandable hIEC progenitors and a functional hIEC monolayer exhibiting intestinal molecular features, cell type diversity, and high activities of intestinal transporters and metabolic enzymes such as cytochrome P450 3A4 (CYP3A4). Functional hIECs are more suitable for predicting compounds metabolized by CYP3A4 and absorbed in the intestine than Caco-2 cells.
View Article and Find Full Text PDFThe Crest mutation in chicken shows incomplete dominance and causes a spectacular phenotype in which the small feathers normally present on the head are replaced by much larger feathers normally present only in dorsal skin. Using whole-genome sequencing, we show that the crest phenotype is caused by a 197 bp duplication of an evolutionarily conserved sequence located in the intron of HOXC10 on chromosome 33. A diagnostic test showed that the duplication was present in all 54 crested chickens representing eight breeds and absent from all 433 non-crested chickens representing 214 populations.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2020
Although brain organoids are an innovative technique for studying human brain development and disease by replicating the structural and functional properties of the developing human brain, some limitations such as heterogeneity and long-term differentiation (over 2 months) impede their application in disease modeling and drug discovery. In this study, we established simplified brain organoids (simBOs), composed of mature neurons and astroglial cells from expandable hPSC-derived primitive neural stem cells (pNSCs). simBOs can be rapidly generated in 2 weeks and have more homogeneous properties.
View Article and Find Full Text PDFLactobacilli, which are probiotic commensal bacteria that mainly reside in the human small intestine, have attracted attention for their ability to exert health-promoting effects and beneficially modulate host immunity. However, host epithelial-commensal bacterial interactions are still largely unexplored because of limited access to human small intestinal tissues. Recently, we described an in vitro maturation technique for generating adult-like, mature human intestinal organoids (hIOs) from human pluripotent stem cells (hPSCs) that closely resemble the in vivo tissue structure and cellular diversity.
View Article and Find Full Text PDFFeathered leg is a trait in domestic chickens that has undergone intense selection by fancy breeders. Previous studies have shown that two major loci controlling feathered leg are located on chromosomes 13 and 15. Here, we present genetic evidence for the identification of candidate causal mutations at these loci.
View Article and Find Full Text PDFThe role of Situin 1 (SIRT1) in tumorigenesis is still controversial due to its wide range of substrates, including both oncoproteins and tumor suppressors. A recent study has demonstrated that SIRT1 interferes in the Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven activation of the Raf-mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway, thereby inhibiting tumorigenesis. However, the molecular mechanism of SIRT1 as a tumor suppressor in RAS-driven tumorigenesis has been less clearly determined.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2020
Current cerebral organoid technology provides excellent in vitro models mimicking the structure and function of the developing human brain, which enables studies on normal and pathological brain; however, further improvements are necessary to overcome the problems of immaturity and dearth of non-parenchymal cells. Vascularization is one of the major challenges for recapitulating processes in the developing human brain. Here, we examined the formation of blood vessel-like structures in cerebral organoids induced by vascular endothelial growth factor (VEGF) in vitro.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2019
Selenium (Se) plays a vital role in reactive oxygen species (ROS) homeostasis and redox regulation in intracellular signaling via selenocysteine (Sec), known as the 21st proteinogenic amino acid, but its specific biological functions in development and disease remain undiscovered. In this study, we explored the role of selenophosphate synthetase 1 (SEPHS1) in the pluripotency maintenance and reprogramming. We found that high level of SEPHS1 is retained in undifferentiated embryonic stem cells (ESCs), which is decreased during their differentiation.
View Article and Find Full Text PDFBackground & Aims: The development of hepatic models capable of long-term expansion with competent liver functionality is technically challenging in a personalized setting. Stem cell-based organoid technologies can provide an alternative source of patient-derived primary hepatocytes. However, self-renewing and functionally competent human pluripotent stem cell (PSC)-derived hepatic organoids have not been developed.
View Article and Find Full Text PDF