Publications by authors named "Miodrag Grbic'"

Serbia preserves a high number of local grape varieties, which have been cultivated across the country for centuries. Now, these ancient varieties are in the spotlight, and there is a global trend towards their recovery and characterization because they can revitalize regional, national and international grape and wine sectors. In addition, their genetic study can be useful to find new pedigree relationships to reveal how local varietal assortment evolved over time.

View Article and Find Full Text PDF

Mites are highly prevalent arthropods that infest diverse ecological niches globally. Approximately 55,000 species of mites have been identified but many more are yet to be discovered. Of the ones we do know about, most go unnoticed by humans and animals.

View Article and Find Full Text PDF

The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1 millennium CE.

View Article and Find Full Text PDF

Energy metabolism is a highly conserved process that balances generation of cellular energy and maintenance of redox homeostasis. It consists of five interconnected pathways: glycolysis, tricarboxylic acid cycle, pentose phosphate, trans-sulfuration, and NAD+ biosynthesis pathways. Environmental stress rewires cellular energy metabolism.

View Article and Find Full Text PDF

The two-spotted spider mite, Tetranychus urticae, is a major cosmopolitan pest that feeds on more than 1100 plant species. Its genome contains an unprecedentedly large number of genes involved in detoxifying and transporting xenobiotics, including 80 genes that code for UDP glycosyltransferases (UGTs). These enzymes were acquired via horizontal gene transfer from bacteria after loss in the Chelicerata lineage.

View Article and Find Full Text PDF

Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te).

View Article and Find Full Text PDF

Arthropods from class Arachnida constitute a large and diverse group with over 100,000 described species, and they are sources of many proteins that have a direct impact on human health. Despite the importance of Arachnida, few proteins originating from these organisms have been characterized in terms of their structure. Here we present a detailed analysis of Arachnida proteins that have their experimental structures determined and deposited to the Protein Data Bank (PDB).

View Article and Find Full Text PDF

Environmental RNAi has been developed as a tool for reverse genetics studies and is an emerging pest control strategy. The ability of environmental RNAi to efficiently down-regulate the expression of endogenous gene targets assumes efficient uptake of dsRNA and its processing. In addition, its efficiency can be augmented by the systemic spread of RNAi signals.

View Article and Find Full Text PDF

Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure.

View Article and Find Full Text PDF

Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T.

View Article and Find Full Text PDF
Article Synopsis
  • Arabidopsis thaliana uses the jasmonate (JA) signaling pathway to produce defense compounds against herbivores like the two-spotted spider mite (Tetranychus urticae).
  • The study focuses on understanding which phytochemicals, particularly those derived from tryptophan, are critical for Arabidopsis's defense against this herbivore.
  • Results show that the indole glucosinolate (IG) pathway is essential for tryptophan-mediated defense, requiring processing by myrosinases to effectively limit the mite's oviposition, while also highlighting that additional JA-regulated defenses play a role in overall protection.
View Article and Find Full Text PDF

Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known.

View Article and Find Full Text PDF

GSTs (Glutathione S-transferases) are known to catalyze the nucleophilic attack of the sulfhydryl group of reduced glutathione (GSH) on electrophilic centers of xenobiotic compounds, including insecticides and acaricides. Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 32 genes that code for secreted proteins belonging to the GST family of enzymes. To better understand the role of these proteins in T.

View Article and Find Full Text PDF

Comprehensive understanding of pleiotropic roles of RNAi machinery highlighted the conserved chromosomal functions of RNA interference. The consequences of the evolutionary variation in the core RNAi pathway genes are mostly unknown, but may lead to the species-specific functions associated with gene silencing. The two-spotted spider mite, Tetranychus urticae, is a major polyphagous chelicerate pest capable of feeding on over 1100 plant species and developing resistance to pesticides used for its control.

View Article and Find Full Text PDF

Spider mites constitute an assemblage of well-known pests in agriculture, but are less known for their ability to spin silk of nanoscale diameters and high Young's moduli. Here, we characterize silk of the gorse spider mite Tetranychus lintearius, which produces copious amounts of silk with nano-dimensions. We determined biophysical characteristics of the silk fibres and manufactured nanoparticles and biofilm derived from native silk.

View Article and Find Full Text PDF

Two-spotted spider mite (TSSM) Tetranychus urticae (Koch) is an important agricultural pest that causes considerable yield losses to over 150 field and greenhouse crops. Mitochondrial electron transport inhibitors (METI) acaricides are commonly used to control mite species in commercial Canadian greenhouses. Development of resistance to METIs in TSSM populations have been reported worldwide, but not until recently in Canada.

View Article and Find Full Text PDF

Global viticulture has evolved following market trends, causing loss of cultivar diversity and traditional practices. In Montenegro, modern viticulture co-exists with a traditional viticulture that still maintains ancient practices and exploits local cultivars. As a result, this region provides a unique opportunity to explore processes increasing genetic diversity.

View Article and Find Full Text PDF

The false spider mite Brevipalpus yothersi infests a broad host plant range and has become one of the most economically important species within the genus . This phytophagous mite inflicts damage by both feeding on plants and transmitting plant viruses. Here, we report the first draft genome sequence of the false spider mite, which is also the first plant virus mite vector to be sequenced.

View Article and Find Full Text PDF

Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 17 genes that code for secreted proteins belonging to the "intradiol dioxygenase-like" subgroup. Phylogenetic analyses indicate that this novel enzyme family has been acquired by horizontal gene transfer. In order to better understand the role of these proteins in T.

View Article and Find Full Text PDF

The two-spotted spider mite (TSSM), Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores, feeding on more than 1,100 plant species. Its wide host range suggests that TSSM has an extraordinary ability to modulate its digestive and xenobiotic physiology. The analysis of the TSSM genome revealed the expansion of gene families that encode proteins involved in digestion and detoxification, many of which were associated with mite responses to host shifts.

View Article and Find Full Text PDF
Article Synopsis
  • Plant-herbivore interactions have evolved over time into a complex arms race, with specialized herbivores developing strategies for specific plants, while generalists like the two-spotted spider mite (TSSM) face a wider range of plant defenses.
  • This review focuses on TSSM's adaptations that allow it to thrive on many different plants and the direct defenses plants employ against such herbivores.
  • The findings emphasize the importance of understanding both plant defense mechanisms and herbivore adaptations for developing effective pest control strategies in agriculture.
View Article and Find Full Text PDF

RNA interference (RNAi) can be used for the protection against agricultural pests through the silencing of genes required for pest fitness. To assess the potential of RNAi approaches in the two-spotted spider mite, Tetranychus urticae, we compared 5 methods for the delivery of double-stranded RNA (dsRNA). These methods include mite feeding on either (i) leaves floating on a dsRNA solution, (ii) dsRNA-expressing plants, (iii) artificial diet supplemented with dsRNA, or (iv) dsRNA-coated leaves, and (v) mite soaking in a dsRNA solution.

View Article and Find Full Text PDF

The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionft3h02vt33097jlqni4c6di33fni40se): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once