Publications by authors named "Minzhong Xu"

We present a methodology that, for the first time, allows rigorous quantum calculation of the inelastic neutron scattering (INS) spectra of a triatomic molecule in a nanoscale cavity, in this case, HO inside the fullerene C. Both moieties are taken to be rigid. Our treatment incorporates the quantum six-dimensional translation-rotation (TR) wave functions of the encapsulated HO, which serve as the spatial parts of the initial and final states of the INS transitions.

View Article and Find Full Text PDF

Accurate quantum simulations of the low-temperature inelastic neutron scattering (INS) spectra of HF@C are reported for two incident neutron wavelengths. They are distinguished by the rigorous inclusion of symmetry-breaking effects in the treatment and having the spectra computed with HF as the guest, rather than H or HD, as in the past work. The results demonstrate that the precedent-setting INS selection rule, originally derived for H and HD in near-spherical nanocavities, applies also to HF@C, despite the large mass asymmetry of HF and the strongly mixed character of its translation-rotation eigenstates.

View Article and Find Full Text PDF

We systematically investigate the manifestations of the condensed-phase environment of the structure II clathrate hydrate in the translation-rotation (TR) dynamics and the inelastic neutron scattering (INS) spectra of an H2 molecule confined in the small dodecahedral cage of the hydrate. The aim is to elucidate the extent to which these properties are affected by the clathrate water molecules beyond the confining cage and the proton disorder of the water framework. For this purpose, quantum calculations of the TR eigenstates and INS spectra are performed for H2 inside spherical clathrate domains of gradually increasing radius and the number of water molecules ranging from 20 for the isolated small cage to more than 1800.

View Article and Find Full Text PDF

Knowledge of the relevant selection rules is crucial for the accurate interpretation of experimental spectra in general. There has been a consensus for a long time that the incoherent inelastic neutron scattering (INS) spectroscopy of the vibrations of discrete molecular compunds is free from any selection rules. We contradict this widely held view by presenting an analytical derivation of the general selection rule for the INS spectroscopy of a hydrogen molecule inside a near-spherical nanocavity.

View Article and Find Full Text PDF

We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics.

View Article and Find Full Text PDF

We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

View Article and Find Full Text PDF

We have performed high-resolution inelastic neutron scattering (INS) measurements on binary hydrogen clathrate hydrates exhibiting the hexagonal structure (sH). Two samples, differing only in the ortho/para fraction of hydrogen, were prepared using heavy water and methyl tert-butyl ether as the promoter in its perdeuterated form. The INS spectrum of the translation-rotation (TR) excitations of the guest H2 molecule was obtained by subtracting the very weak signal due to the D2O lattice modes.

View Article and Find Full Text PDF

In the supramolecular complex H2@C60, the lightest of molecules, H2, is encapsulated inside the most highly symmetric molecule C60. The elegance and apparent simplicity of H2@C60 conceal highly intricate quantum dynamics of the coupled translational and rotational motions of the guest molecule in a nearly spherical nanoscale cavity, which embodies some of the most fundamental concepts of quantum mechanics. Here we present the first rigorous and highly accurate quantum calculations of the inelastic neutron scattering (INS) spectra of this prototypical endohedral fullerene complex and their temperature dependence.

View Article and Find Full Text PDF

Hydrogen is one of the few molecules that has been incarcerated in the molecular cage of C₆₀ to form the endohedral supramolecular complex H₂@C₆₀. In this confinement, hydrogen acquires new properties. Its translation motion, within the C₆₀ cavity, becomes quantized, is correlated with its rotation and breaks inversion symmetry that induces infrared (IR) activity of H₂.

View Article and Find Full Text PDF

We report rigorous quantum calculations of the inelastic neutron scattering (INS) spectra of HD@C₆₀, over a range of temperatures from 0 to 240 K and for two incident neutron wavelengths used in recent experimental investigations. The computations were performed using our newly developed methodology, which incorporates the coupled five-dimensional translation-rotation (T-R) eigenstates of the guest molecule as the initial and final states of the INS transitions, and yields highly detailed spectra. Depending on the incident neutron wavelength, the number of computed INS transitions varies from almost 500 to over 2000.

View Article and Find Full Text PDF

We report rigorous quantum five-dimensional (5D) calculations of the coupled translation-rotation (TR) energy levels and wave functions of an H2 molecule, in the ground (ν = 0) and vibrationally excited (ν = 1) states, confined inside the octahedral interstitial site of solid C60 with S6 symmetry. Translational and rotational excitations of H2 in this nanocavity have been measured by the inelastic neutron scattering (INS) and infrared (IR) spectroscopy, enabling direct comparison between theory and experiment. A pairwise additive 5D intermolecular potential energy surface (PES) was employed in the calculations.

View Article and Find Full Text PDF

We report inelastic neutron scattering (INS) measurements on molecular hydrogen trapped in simple (D2O) and binary (D2O plus perdeuterated tetrahydrofuran) clathrate hydrates, performed at a low temperature using two different neutron spectrometers to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest H2 molecule. They agree well with the rigorous fully quantum simulations, which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the H2 microscopic dynamics and the resulting spectra.

View Article and Find Full Text PDF

We report rigorous quantum five-dimensional (5D) calculations of the translation-rotation (T-R) energy levels and wave functions of H(2) inside aza-thia-open-cage fullerene (ATOCF). Translational and rotational excitations of this endohedral complex have been measured in a recent inelastic neutron scattering (INS) study, enabling direct comparison between theory and experiment. ATOCF has no symmetry, and therefore the intermolecular potential energy surface (PES) governing the T-R dynamics of H(2) is strongly anisotropic.

View Article and Find Full Text PDF

Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60).

View Article and Find Full Text PDF

We report fully coupled quantum six-dimensional (6D) calculations of the translation-rotation (T-R) energy levels of CH(4) molecule inside the small dodecahedral (5(12)) and large tetracaidecahedral (5(12)6(2)) cages of the structure I clathrate hydrate. The quantum dynamics of the three translational and three rotational degrees of freedom of CH(4) are treated rigorously, while the guest molecule and the host cavities are taken to be rigid. The matrix of the full 6D T-R Hamiltonian is diagonalized in the product basis of contracted translational and angular basis functions, generated by solving two reduced-dimension (3D) eigenvalue problems.

View Article and Find Full Text PDF

We report fully coupled quantum five-dimensional calculations of the translation-rotation (T-R) energy levels of one H(2), HD, and D(2) molecule confined inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate. Highly converged T-R eigenstates have been obtained for excitation energies beyond the j = 2 rotational levels of the guest molecules, in order to allow comparison with the recent Raman spectroscopic measurements. The translationally excited T-R states are assigned with the quantum numbers n and l of the 3D isotropic harmonic oscillator.

View Article and Find Full Text PDF

We have developed a quantitatively accurate pairwise additive five-dimensional (5D) potential energy surface (PES) for H(2) in C(60) through fitting to the recently published infrared (IR) spectroscopic measurements of this system for H(2) in the vibrationally excited nu=1 state. The PES is based on the three-site H(2)-C pair potential introduced in this work, which in addition to the usual Lennard-Jones (LJ) interaction sites on each H atom of H(2) has the third LJ interaction site located at the midpoint of the H-H bond. For the optimal values of the three adjustable parameters of the potential model, the fully coupled quantum 5D calculations on this additive PES reproduce the six translation-rotation (T-R) energy levels observed so far in the IR spectra of H(2)@C(60) to within 0.

View Article and Find Full Text PDF

We report rigorous quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complex phthalocyanine.He (Pc.He).

View Article and Find Full Text PDF

We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H(2) (p-H(2)) and ortho-D(2) (o-D(2)) molecules inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H(2))(n) and (o-D(2))(n) clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H(2))(4).

View Article and Find Full Text PDF

We have performed rigorous quantum five-dimensional (5D) calculations of the translation-rotation (T-R) energy levels and wave functions of H(2), HD, and D(2) inside C(60). This work is an extension of our earlier investigation of the quantum T-R dynamics of H(2)@C(60) [M. Xu et al.

View Article and Find Full Text PDF

We have performed rigorous quantum five-dimensional (5D) calculations and analysis of the translation-rotation (T-R) energy levels of one H(2), D(2), and HD molecule inside the small dodecahedral (H(2)O)(20) cage of the structure II clathrate hydrate, which was treated as rigid. The H(2)- cage intermolecular potential energy surface (PES) used previously in the molecular dynamics simulations of the hydrogen hydrates [Alavi et al., J.

View Article and Find Full Text PDF

We report rigorous quantum calculations of the translation-rotation (T-R) eigenstates of the H2 molecule in C60. The resulting level structure can be explained in terms of a few dominant features. These include the coupling between the orbital and the rotational angular momenta of H2 to give the total angular momentum lambda, and the splitting of the sevenfold degeneracy of T-R levels with lambda=3 by the nonsphericity of C60, according to the rules of the icosahedral I h group.

View Article and Find Full Text PDF

Higher-lying five-dimensional translation-rotation (T-R) eigenstates of a single p-H2 and o-D2 molecule confined inside the small dodecahedral (512) cage of the structure II clathrate hydrate are calculated rigorously, as fully coupled, with the cage assumed to be rigid. The calculations cover the excitation energies up to and beyond the j=2 rotational level of the free molecule, 356 cm(-1) for H2 and 179 cm(-1) for D2. It is found that j is a good quantum number for all the T-R states of p-H2, j=0 and j=2, considered.

View Article and Find Full Text PDF

We have performed a rigorous theoretical study of the quantum translation-rotation (T-R) dynamics of one and two H2 and D2 molecules confined inside the large hexakaidecahedral (5(12)6(4)) cage of the sII clathrate hydrate. For a single encapsulated H2 and D2 molecule, accurate quantum five-dimensional calculations of the T-R energy levels and wave functions are performed that include explicitly, as fully coupled, all three translational and the two rotational degrees of freedom of the hydrogen molecule, while the cage is taken to be rigid. In addition, the ground-state properties, energetics, and spatial distribution of one and two p-H2 and o-D2 molecules in the large cage are calculated rigorously using the diffusion Monte Carlo method.

View Article and Find Full Text PDF

We report accurate quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complexes tetracene.He and pentacene.He in the S1 excited electronic state.

View Article and Find Full Text PDF