Transition-metal-oxide-based electrochemical electrodes usually suffer from poor electron and ion transport, leading to deteriorated rate performance and cycling stability. Herein, we address these issues by developing a facile "conducting encapsulation" strategy toward a nanoporous PEDOT nanowire/MnO nanoparticle/PEDOT nanowire composite electrode. Through encapsulation of the PEDOT nanowire network, the overall electrochemical performance of the resultant composite electrode is substantially enhanced.
View Article and Find Full Text PDFPolymers (Basel)
October 2022
In this study, a strategy to fabricate nitrogen-doped porous core-sheath graphene fibers with the incorporation of polypyrrole-induced nitrogen doping and graphene oxide for porous architecture in sheath is reported. Polypyrrole/graphene oxide were introduced onto wet-spun graphene oxide fibers by dip-coating. Nitrogen-doped core-sheath graphene-based fibers (NSG@GFs) were obtained with subsequently thermally carbonized polypyrrole/small-sized graphene oxide and graphene oxide fiber slurry (PPY/SGO@GOF).
View Article and Find Full Text PDFChemically converted graphene fiber-shaped supercapacitors (FSSCs) are highly promising flexible energy storage devices for wearable electronics. However, the ultralow specific capacitance and poor rate performance severely hamper their practical applications. They are caused by severe stacking of graphene nanosheets and tortuous ion diffusion path in graphene-based electrodes; thus, the ultralow utilization of graphene has been rarely carefully considered to date.
View Article and Find Full Text PDF