Background: Plant-derived exosome-like nanoparticles (PELNs) have received widespread attention in treating ulcerative colitis (UC). However, the role of -derived exosome-like nanoparticles (HELNs) in UC remains unclear. This study aims to evaluate the efficacy of HELNs in treating colitis in mice and investigate its potential mechanisms.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
December 2023
Background And Aim: Autophagy and gut microbiota correlates closely with the inflammatory bowel disease. Herein, we aimed to study the roles of rapamycin on the gut microbiota in inflammatory bowel disease.
Methods: Acute colitis was induced with dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzenesulfonic acid solution in mice.
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation.
View Article and Find Full Text PDFPlant-derived exosome-like nanoparticles (PDENs) have been paid great attention in the treatment of ulcerative colitis (UC). As a proof of concept, we isolated and identified Portulaca oleracea L-derived exosome-like nanoparticles (PELNs) from edible Portulaca oleracea L, which exhibited desirable nano-size (~ 160 nm) and a negative zeta potential value (-31.4 mV).
View Article and Find Full Text PDFBiomed Pharmacother
September 2023
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization.
View Article and Find Full Text PDFThe organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli.
View Article and Find Full Text PDFIntroduction: Immune checkpoint (IC) inhibitor-related immunotherapies have attracted considerable attention in hepatocellular carcinoma (HCC). High IC expression and high tumor infiltrating lymphocyte levels are the current indicators of sensitivity to IC inhibitors. Thus, it is imperative to apply precision medicine strategies for patient selection.
View Article and Find Full Text PDFInflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic autoimmune disorder characterized by inflammation. However, currently available disease-modifying anti-IBD drugs exhibit limited efficacy in IBD therapy. Furthermore, existing therapeutic approaches provide only partial relief from IBD symptoms and are associated with certain side effects.
View Article and Find Full Text PDFMessenger RNA (mRNA) holds great potential in developing immunotherapy, protein replacement, and genome editing. In general, mRNA does not have the risk of being incorporated into the host genome and does not need to enter the nucleus for transfection, and it can be expressed even in nondividing cells. Therefore, mRNA-based therapeutics provide a promising strategy for clinical treatment.
View Article and Find Full Text PDFBacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, lipids, and other molecules. Extracellular vesicles (EVs) are secreted by microorganisms and can transport a variety of important factors, such as virulence factors, antibiotics, HGT, and defensive factors produced by host eukaryotic cells.
View Article and Find Full Text PDFAs double membrane-encapsulated nanovesicles (30-150 nm), exosomes (Exos) shuttle between different cells to mediate intercellular communication and transport active cargoes of paracrine factors. The anti-inflammatory and immunomodulatory activities of mesenchymal stem cell (MSC)-derived Exos (MSC-Exos) provide a rationale for novel cell-free therapies for inflammatory bowel disease (IBD). Growing evidence has shown that MSC-Exos can be a potential candidate for treating IBD.
View Article and Find Full Text PDFThe recent rapid development in the field of extracellular vesicles (EVs) based nanotechnology has provided unprecedented opportunities for nanomedicine platforms. As natural nanocarriers, EVs such as exosomes, exosome-like nanoparticles and outer membrane vesicles (OMVs), have unique structure/composition/morphology characteristics, and show excellent physical and chemical/biochemical properties, making them a new generation of theranostic nanomedicine. Here, we reviewed the characteristics of EVs from the perspective of their formation and biological function in inflammatory bowel disease (IBD).
View Article and Find Full Text PDFSamarium, gadolinium, and yttrium co-doped ceria (CeSmYGdO, CSYG) and BaInTiO (BIT07) powders were prepared by sol-gel and solid-state reaction methods, respectively. CSYG-BIT07 composite materials were obtained by mechanically mixing the two powders in different ratios and calcining at 1300 °C for 5 h. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as electrical properties and thermal expansion coefficient (TEC) measurements.
View Article and Find Full Text PDFAs a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers.
View Article and Find Full Text PDF