Publications by authors named "Minzhang Sun"

Caffeine is a very common kind of nervous stimulant, and it is primarily metabolized by Cytochrome P450 1A2 (CYP1A2) in the human body. Over the years, determining the interactions between caffeine and CYP1A2 has been a tough issue. The active binding modes and the catalytic regioselectivity of the metabolism between CYP1A2 and caffeine remain unclear.

View Article and Find Full Text PDF

CYP2D6 is one of the most important metalloenzymes involved in the biodegradation of many drug molecules in the human body. It has been found that multiple substrate binding can lead to substrate inhibition of CYP2D6 metabolizing dextromethorphan (DM), but the corresponding theoretical mechanism is rarely reported. Therefore, we chose DM as the probe and performed molecular dynamics simulations and quantum mechanical calculations on CYP2D6-DM systems to investigate the mechanism of how the multiple substrate binding leads to the substrate inhibition of CYP2D6 metabolizing substrates.

View Article and Find Full Text PDF

CYP2D6 is an important enzyme of the cytochrome P450 superfamily, and catalyzes nearly 25% of the drugs sold in the market. For decades, the interactions and metabolism between CYP2D6 and substrates have been a hot topic. However, the key factors of the catalytic regioselectivity for CYP2D6 still remain controversial.

View Article and Find Full Text PDF

Light-oxygen-voltage (LOV) domains are blue light sensors and play an important role in signal transduction in many organisms. Generally, LOV domains use chromophores to absorb photons, and then photochemical reactions will occur to convert light energy into chemical energy and transduce it to the main chain of proteins. These reactions can cause conformational rearrangement of proteins, and thus leading to signal transduction.

View Article and Find Full Text PDF

Glucose transporters (GLUTs) are an essential kind of protein that exists in the neuron and are responsible for glucose transport. In the present study, we performed molecular dynamic simulations to deeply understand the glucose uptake mechanism. According to our results, we reconstruct the glucose uptake model of the GLUT3, which is similar to the working model of GLUTs raised by Yan et al.

View Article and Find Full Text PDF