The antibiotic resistance of bacterial membranes poses a significant threat to global public health, highlighting the urgent need for novel therapeutic agents and strategies to combat bacterial membranes. In response, we have developed a novel macrocyclic host molecule (GCPCB) based on guanidiniocarbonyl-pyrrole (GCP) functionalized cucurbit[7]uril with an aggregation-induced luminescence effect. GCPCB exhibits high antimicrobial potency against bacterial membranes, particularly demonstrating strong antibacterial activity against Gram-positive strains of and Gram-negative strains of .
View Article and Find Full Text PDFUnderstanding how subtle structural differences between macrocyclic conformational isomers impact their properties and separation has garnered increasing attention in the field of supramolecular synthetic chemistry. In this work, a series of tetraphenylene (TPE)-embedded butterfly bis-crown ether macrocycles (BCE[n], n = 4-7), comprising two crown ether side rings and a TPE core, are synthesized through intramolecular McMurry coupling. Unexpectedly, the presence of flexible oligoethylene chains with varying lengths are found to influence molecular conformation via multiple intramolecular interactions, resulting in the formation of two stabilized conformers with specific semi-rigid symmetric/asymmetric structures (sym-BCE[n] and asym-BCE[n], n = 5, 6).
View Article and Find Full Text PDFA novel artificial light-harvesting system, featuring sequential energy transfer processes, has been successfully constructed, which demonstrated white light emission through a precise adjustment of the donor-acceptor ratio. To better mimic natural photosynthesis, the system is employed as a nanoreactor for the photocatalysis of a cross-dehydrogenative coupling (CDC) reaction in aqueous solution.
View Article and Find Full Text PDFThe development of organic materials that deliver room-temperature phosphorescence (RTP) is highly interesting for potential applications such as anticounterfeiting, optoelectronic devices, and bioimaging. Herein, a molecular chaperone strategy for controlling isolated chromophores to achieve high-performance RTP is demonstrated. Systematic experiments coupled with theoretical evidence reveal that the host plays a similar role as a molecular chaperone that anchors the chromophores for limited nonradiative decay and directs the proper conformation of guests for enhanced intersystem crossing through noncovalent interactions.
View Article and Find Full Text PDFA dimeric fluorescent macrocycle m-TPE Di-EtP5 (meso-tetraphenylethylene dimeric ethoxypillar[5]arene) is synthesized based on the meso-functionalized ethoxy pillar[5]arene. Through the connectivity of two pillar[5]arenes by CC double bond, the central tetraphenylethylene (TPE) moiety is simultaneously formed. The resultant bicyclic molecule not only retains the host-guest properties of pillararenes but also introduces the interesting aggregation-induced emission properties inherent in the embedded TPE structure.
View Article and Find Full Text PDFHerein, we have designed and fabricated a simple and efficient supramolecular self-assembled nanosystem based on host-guest interactions between water-soluble tetraphenylethylene-embedded pillar[5]arene ( ) and ammonium benzoyl-ʟ-alaninate () in an aqueous medium. The obtained assembly of and showed aggregation-induced emission (AIE) via the blocking of intramolecular phenyl-ring rotations and functioned as an ideal donor. After the loading of eosin Y () as acceptor on the surface of the assembly of and , the worm-like nanostructures changed into nanorods, which facilitates a Förster resonance energy transfer (FRET) from the and assembled donor to the acceptor present in the nanorod assembly.
View Article and Find Full Text PDFTransformation of [1]paracyclophanes ([15]PCP) into fluorophores has been achieved by embedding tetraphenylethene (TPE) units into their skeletons at the -positions. The obtained two hosts demonstrated distinct aggregation-induced emission (AIE) properties and their fluorescence could be selectively quenched by Ni ions.
View Article and Find Full Text PDFSupramolecular prodrug vesicles with efficient property for dual chemotherapy have been successfully constructed based on the orthogonal self-assembly between a water-soluble pillar[5]arene host () and a betulinic acid guest () as well as doxorubicin (DOX). Under the acidic microenvironment of cancer cells, both the encapsulated anticancer drug DOX and prodrug can be effectively released from DOX-loaded ⊃ prodrug vesicles for combinational chemotherapy. Furthermore, bioexperiments indicate that DOX-loaded prodrug vesicles can obviously enhance the anticancer efficiency based on the cooperative effect of DOX and , while remarkably reducing the systematic toxicity in tumor-mice, displaying great potential applications in combinational chemotherapy for cancer treatments.
View Article and Find Full Text PDFAn orthogonal strategy was utilized for synthesizing a novel water-soluble pillar[5]arene () with tetraphenylethene-functionalized on the bridged methylene group (-position) of the pillararene skeleton. The obtained macrocycle exhibit both the aggregation-induced emission (AIE) effect and interesting host-guest property. Moreover, it can be made to bind with a tailor-made camptothecin-based prodrug guest () to form AIE-nanoparticles based on host-guest interaction and the fluorescence resonance energy transfer process for fabricating a drug delivery system.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2021
Due to the unique characteristics of macrocycles (e.g., the ease of modification, hydrophobic cavities, and specific guest recognition), they can provide a suitable environment to realize photocatalysis via noncovalent interactions with different substrates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2021
The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008.
View Article and Find Full Text PDFAn aggregation-induced emission (AIE) based smart singlet oxygen (O) generation system has been successfully fabricated based on supramolecular host-guest assembly. The controllable O generation can be achieved by conveniently changing the molar ratio between the macrocyclic host (WP5) and the guest molecule (TPEPY). Moreover, reversible control of O generation and fluorescence emission of supramolecular nanoassemblies can be achieved via adding Fe and EDTA, which allows qualitatively monitoring the singlet oxygen generation efficiency by the naked eye.
View Article and Find Full Text PDFAn artificial light-harvesting system with sequential energy-transfer process was fabricated based on a supramolecular strategy. Self-assembled from the host-guest complex formed by water-soluble pillar[5]arene (WP5), a bola-type tetraphenylethylene-functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two-step sequential energy-transfer process with good efficiency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2018
A drive for anti-counterfeiting technology has attracted considerable interests in developing nanomaterials with a wide range of colors and tunable optical properties in solid state. Herein, with a series of conjugated polymers and based on the host-guest driven self-assembly strategy, a color-tunable supramolecular nanoparticle-based system is reported, in which full-color as well as white fluorescence can be achieved. Moreover, this fluorescent platform exhibits reversible photoswitching between quenching and emission by noncovalently introducing a photoresponsive energy acceptor.
View Article and Find Full Text PDFA closed-loop "smart" insulin delivery system with the capability to mimic pancreatic cells will be highly desirable for diabetes treatment. This study reports a multiple stimuli-responsive insulin delivery platform based on an explicit supramolecular strategy. Self-assembled from a well-designed amphiphilic host-guest complex formed by pillar[5]arene and a diphenylboronic acid derivative and loaded with insulin and glucose oxidase, the obtained insulin-GOx-loaded supramolecular vesicles can selectively recognize glucose, accompanied by the structure disruption and efficient release of the entrapped insulin triggered by the high glucose concentration as well as the in situ generated H O and acid microenvironment during the GOx-promoted specific oxidation of glucose into gluconic acid.
View Article and Find Full Text PDFA novel scaffold of indoline thiohydantoin was discovered as potent androgen receptor (AR) antagonist through rational drug designation. Several compounds showed good biological profiles in AR binding and higher selective toxicity than enzalutamide toward LNCaP cells (AR-rich) versus DU145 cells (AR-deficient). In addition, the docking studies supported the rationalization of the biological evaluation.
View Article and Find Full Text PDFFuture Med Chem
November 2016
Deregulation of the cell cycle is a common feature in human cancer. The inhibition of cyclin-dependent kinases (CDKs), which play a crucial role in control of the cell cycle, has always been one of the most promising areas in cancer chemotherapy. This review first summarizes the biology of CDKs and then focuses on the recent advances in both broad-range and selective CDK inhibitors during the last 5 years.
View Article and Find Full Text PDFAlthough prostate cancer can initially respond to androgen deprivation therapy, it will inevitably relapse and switch to a castration-resistant state. The progress in understanding the mechanism of castration-resistant prostate cancer (CRPC) has led to the evolution of novel agents, including sipuleucel-T as an immunomodulant agent, enzalutamide as an androgen receptor antagonist, docetaxel as a chemotherapeutic agent and radium-223 as a radiopharmaceutical agent. In this review, we discuss the main mechanisms of CRPC and the development of promising agents along with the novel therapies in the clinic.
View Article and Find Full Text PDF