Publications by authors named "Minyou Chen"

. Task-related component analysis (TRCA) is a representative subject-specific training algorithm in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces. Task-related components (TRCs), extracted by the TRCA-based spatial filtering from electroencephalogram (EEG) signals through maximizing the reproducibility across trials, may contain some task-related inherent noise that is still trial-reproducible.

View Article and Find Full Text PDF

Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV.

View Article and Find Full Text PDF

Phase-locking value (PLV) is a well-known feature in sensorimotor rhythm (SMR) based BCI. Zero-phase PLV has not been explored because it is generally regarded as the result of volume conduction. Because spatial filters are often used to enhance the amplitude (square root of band power (BP)) feature and attenuate volume conduction, they are frequently applied as pre-processing methods when computing PLV.

View Article and Find Full Text PDF

We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs.

View Article and Find Full Text PDF

We study the coevolution of quantum and classical strategies on weighted and directed random networks in the realm of the prisoner's dilemma game. During the evolution, agents can break and rewire their links with the aim of maximizing payoffs, and they can also adjust the weights to indicate preferences, either positive or negative, towards their neighbors. The network structure itself is thus also subject to evolution.

View Article and Find Full Text PDF

It is crucially important to establish an accurate model to represent the relationship between the actuator forces and the lap surface changes when polishing a large and highly aspheric optical surface. To facilitate a computer-controlled optical polishing process, a neural network based stressed lap surface shape model was developed. The developed model reflects the dynamic deformation of a stressed lap.

View Article and Find Full Text PDF

This paper evaluates the use of the fuzzy k-means clustering method for the clustering of files of 2D chemical structures. Simulated property prediction experiments with the Starlist file of logP values demonstrate that use of the fuzzy k-means method can, in some cases, yield results that are superior to those obtained with the conventional k-means method and with Ward's clustering method. Clustering of several small sets of agrochemical compounds demonstrate the ability of the fuzzy k-means method to highlight multicluster membership and to identify outlier compounds, although the former can be difficult to interpret in some cases.

View Article and Find Full Text PDF

Purpose: New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance.

View Article and Find Full Text PDF