Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue.
View Article and Find Full Text PDFWound healing is among the most complicated physiological processes and requires the synchronization of various cell types with distinct roles to re-establish the condition of the original skin. Patients affected by peripheral neuropathies often experience failure to heal. Loss of Schwann cells (SCs), a crucial population of peripheral nervous system cells in skin, may contribute to chronic wounds.
View Article and Find Full Text PDFThe destruction of alveolar bone is a crucial manifestation of severe chronic periodontitis, which stem cell-based bioengineered therapies are expected to cure. Therefore, a cost-effective, reproducible, quantifiability and easier to administrate animal model that mimics human periodontitis is of great importance for further endeavor. In this study, we created periodontitis rat models in silk ligation group, bone defect group and bone defect/silk ligation group, respectively.
View Article and Find Full Text PDFAdipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process.
View Article and Find Full Text PDFClinical application of mechanical stretching is a reconstructive method for skin repair. Although studies have reported dermal fibroblast heterogeneity, whether stretching affects individual fibroblast subpopulations equally remains unclear. In this study, we show the changes in dermal structure and papillary fibroblast (Fp) in regenerated human skin.
View Article and Find Full Text PDFFusion transcripts or RNAs have been found in both disordered and healthy human tissues and cells; however, their physiological functions in the brain development remain unknown. In the analysis of deposited RNA-sequence libraries covering early to middle embryonic stages, we identify 1,055 fusion transcripts present in the developing neocortex. Interestingly, 98 fusion transcripts exhibit distinct expression patterns in various neural progenitors (NPs) or neurons.
View Article and Find Full Text PDFCortex development is controlled by temporal patterning of neural progenitor (NP) competence with sequential generation of deep and superficial layer neurons, but underlying mechanisms remain elusive. Here, we report a role for heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) in regulating the division of early cortical NPs that mainly give rise to deep-layer neurons via direct neurogenesis. HNRNPA3 is expressed at high levels in NPs of mouse and human cortex at early stages, with a unique peri-chromosome pattern.
View Article and Find Full Text PDF