Publications by authors named "Minye Yang"

The accurate monitoring of vital physiological parameters, exemplified by heart rate, respiratory rate, and intracranial pressure (ICP), is of paramount importance, particularly for managing severe cranial injuries. Despite the rapid development of implantable ICP sensing systems over the past decades, they still suffer from, for example, wire connection, low sensitivity, poor resolution, and the inability to monitor multiple variables simultaneously. Here, we propose an ultrasensitive multimodal biotelemetric system that amalgamates an iontronic pressure transducer with exceptional point (EP) operation for the monitoring of ICP signals.

View Article and Find Full Text PDF

Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces.

View Article and Find Full Text PDF

Chronic wounds have emerged as a significant healthcare burden, affecting millions of patients worldwide and presenting a substantial challenge to healthcare systems. The diagnosis and management of chronic wounds are notably intricate, with inappropriate management contributing significantly to the amputation of limbs. In this work, we propose a compact, wireless, battery-free, and multimodal wound monitoring system to facilitate timely and effective wound treatment.

View Article and Find Full Text PDF

The aim of the work was to systematically evaluate the efficacy and safety of Vandetanib in the treatment of advanced medullary thyroid carcinoma (MTC). MeSH entries to search for randomized controlled trials and clinical research literature on the application of Vandetanib in the treatment of medullary thyroid cancer from PubMed, Chinese national knowledge infrastructure (CNKI), and Web of Science databases since their establishment until March 2023 were used. In terms of efficacy, the analysis results showed that Vandetanib had a significantly higher objective response rate compared to the control group using placebo (OR=2.

View Article and Find Full Text PDF

The intersection of biomedicine and radio frequency (RF) engineering has fundamentally transformed self-health monitoring by leveraging soft and wearable electronic devices. This paradigm shift presents a critical challenge, requiring these devices and systems to possess exceptional flexibility, biocompatibility, and functionality. To meet these requirements, traditional electronic systems, such as sensors and antennas made from rigid and bulky materials, must be adapted through material science and schematic design.

View Article and Find Full Text PDF

Physically unclonable functions (PUFs) are a class of hardware-specific security primitives based on secret keys extracted from integrated circuits, which can protect important information against cyberattacks and reverse engineering. Here, we put forward an emerging type of PUF in the electromagnetic domain by virtue of the self-dual absorber-emitter singularity that uniquely exists in the non-Hermitian parity-time ()-symmetric structures. At this self-dual singular point, the reconfigurable emissive and absorptive properties with order-of-magnitude differences in scattered power can respond sensitively to admittance or phase perturbations caused by, for example, manufacturing imperfectness.

View Article and Find Full Text PDF

Radio frequency identification (RFID) has gained significant attention because it provides a highly versatile platform for identifying, tracking, and monitoring objects. An emerging trend in this technology is the use of nonlinear RFID, such as passive harmonic tags, which have been demonstrated to be effective against clutters, echoes, crosstalk, and other electromagnetic interferences. This article presents a comprehensive review of recent advances and applications of passive harmonic RFIDs and integrated systems.

View Article and Find Full Text PDF

In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field.

View Article and Find Full Text PDF

The spectral sensitivity near exceptional points (EPs) has been recently explored as an avenue for building sensors with enhanced sensitivity. However, to date, it is not clear whether this class of sensors does indeed outperform traditional sensors in terms of signal-to-noise ratio. In this work, we investigate the spectral sensitivity associated with EPs under a different lens and propose to utilize it as a resource for hardware security.

View Article and Find Full Text PDF

Vital signal monitoring, such as pulse, respiration rate, intra-organ and intra-vascular pressure, can provide important information for determination of clinic diagnosis, treatments, and surgical protocols. Nowadays, micromachined bioimplants, equipped with antennas for converting bio-signals to modulated radio transmissions, may allow remote continuous monitoring of patients' vital signs. Yet, current passive biotelemetry techniques usually suffer from poor signal reproducibility and robustness in light of inevitable misalignment between transmitting and receiving antennas.

View Article and Find Full Text PDF

We herein introduce a lightweight and zero-power smart face mask, capable of wirelessly monitoring coughs in real time and identifying proper mask wearing in public places during a pandemic. The smart face mask relies on the compact, battery-free radio frequency (RF) harmonic transponder, which is attached to the inner layer of the mask for detecting its separation from the face. Specifically, the RF transponder composed of miniature antennas and passive frequency multiplier is made of spray-printed silver nanowires (AgNWs) coated with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) passivation layer and the recently discovered multiscale porous polystyrene--poly(ethylene--butylene)--polystyrene (SEBS) substrate.

View Article and Find Full Text PDF

In this paper, we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling (PTX)-symmetric non-Hermitian metasurfaces, which leverage exotic singularities, such as the exceptional point (EP) and the coherent perfect absorber-laser (CPAL) point, to significantly enhance the sensitivity and detectability of photonic sensors. We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric, unbalanced gain-loss profile. The PTX-symmetric metasurfaces can exhibit similar scattering properties as their PT-symmetric counterparts at singular points, while achieving a higher sensitivity and a larger modulation depth, possible with the reciprocal-scaling factor (i.

View Article and Find Full Text PDF

Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone.

View Article and Find Full Text PDF

In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed.

View Article and Find Full Text PDF

The detection of mycotoxins in food is urgently needed because they pose a significant threat to public health. In this study, we developed a quantitative detection platform for mycotoxins by integrating multicolor upconversion nanoparticle barcode technology with fluorescence image processing using a smartphone-based portable device. The multi-colored upconversion nanoparticle encoded microspheres (UCNMs) were used as encoded signals for detecting different mycotoxins simultaneously.

View Article and Find Full Text PDF