Retroactive interference (RI) occurs when new incoming information impairs an existing memory, which is one of the primary sources of forgetting. Although long-term potentiation (LTP) reversal shows promise as the underlying neural correlate, the key molecules that control the sensitivity of memory circuits to RI are unknown, and the developmental trajectory of RI effects is unclear. Here we found that depotentiation in the hippocampal dentate gyrus (DG) depends on GluN2A-containing NMDA receptors (NMDARs).
View Article and Find Full Text PDFFront Cell Neurosci
January 2017
Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks.
View Article and Find Full Text PDF