The integration of perovskites with mature silicon platform has emerged as a promising approach in the development of efficient on-chip light sources and high-brightness displays. However, the performance of Si-based green perovskite light-emitting diodes (PeLEDs) still falls significantly short compared to their red and near-infrared counterparts. In this study, it is revealed that the high work function Au, widely employed in Si-based top-emission PeLEDs as the reflective bottom electrode, exhibits considerably lower reflectivity in the green spectrum than in the longer wavelengths.
View Article and Find Full Text PDFPerovskite light-emitting diodes (PeLEDs) have shown incalculable application potential in the fields of next-generation displays and light communication owing to the rapidly increased external quantum efficiencies (EQEs). However, most PeLEDs obtain a maximum EQE at small current density (J) region and suffer from severe efficiency roll-off in different extents. Herein, it is demonstrated that the dopant with large dipole moment like KBF facilitates the effective dielectric regulation of perovskite emissive layer.
View Article and Find Full Text PDFChallenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization.
View Article and Find Full Text PDFVacuum vapor deposition (VVD) is a promising way to advancing the commercialization of perovskite light sources owing to its convenience for wafer-scale mass production and compatibility with silicon photonics manufacturing infrastructure. However, the light emission performance of VVD-grown perovskites still lags far behind that of the conventional solution-processed counterparts due to their inferior luminescence properties. Here, a 0D/3D cesium-lead-bromide perovskite composite film is prepared on Si/SiO substrates through composition modulation with the VVD method, which exhibits an ultralow amplified spontaneous emission (ASE) threshold down to 14.
View Article and Find Full Text PDF