Publications by authors named "Minxia Yao"

The adjustment of crystal symmetry and intramolecular magnetic coupling is of great importance for the construction of high-performance single-molecule magnets. By using an aggregation-induced-emission-active pyridine-carbohydrazone-based Schiff base ligand and phosphine oxides, four dinuclear and one one-dimensional Dy-based complexes, [Dy(TPE-pc)(BuPO)Cl]·2CHCN·2HO (1), [Dy(TPE-pc)(CyPO)Cl] (2), [Dy(TPE-pc)(MePA)Cl]·2CHOH (3), [Dy(TPE-pc)(PhPO)Cl] (4) and [Dy(TPE-pc)(DPPO)Cl] (5) (HTPE-pc = ()-'-(2-hydroxy-5-(1,2,2-triphenylvinyl)benzylidene)picolinohydrazide, MePA = -phenyl-',''-bis(morpholinyl) phosphoric triamide, DPPO = piperazine-1,4-diylbis(diphenyl phosphine oxide)), were isolated. All complexes are made up of an enol oxygen-bridged Dy unit, where Dy ions possess a pentagonal bipyramidal geometry with pseudo symmetry.

View Article and Find Full Text PDF

Four Ni-Ln-Ni heterometallic complexes, [Ni2LnL2]NO3·3H2O (H3L = tri(((3-methoxysalicylidene)amino)ethyl)amine, Ln = Gd for , Tb for and Dy for , respectively) and [Ni2DyL2]ClO4·MTBE·0.65H2O (, MTBE = methyl tert-butyl ether) have been synthesized by diffusion of methyl tert-butyl ether vapor into the reaction solution. The X-ray analyses demonstrated that the Gd(III) ion in exhibits rare seven-coordination, the Tb(III) and Dy(III) ions in display unusual six-coordination, and two Ni(II) ions and one Ln(III) ion are bridged by six phenolato atoms to form linear Ni-Ln-Ni heterotrinuclear complexes for .

View Article and Find Full Text PDF

By the reaction of chiral Mn(III) Schiff-base complexes with the dicyanoruthenate building block, [Ru(salen)(CN)2](-) (salen(2-) = N,N'-ethylenebis(salicylideneimine) dianion), two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes, [Mn((R,R)-salcy)Ru(salen)(CN)2]n (1-(RR)) and [Mn((S,S)-salcy)Ru(salen)(CN)2]n (1-(SS)) (Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [Mn((R,R)-salphen)Ru(salen)(CN)2]n (2-(RR)) and [Mn((S,S)-salphen)Ru(salen)(CN)2]n (2-(SS)) (salphen = N,N'-(1,2-diphenylethylene)bis(salicylideneiminato) dianion), were synthesized and structurally characterized. Circular dichroism (CD) and vibrational circular dichroism (VCD) spectra confirm the enantiomeric nature of the optically active complexes. Structural analyses reveal the formation of neutral cyano-bridged zigzag single chains in 1-(RR) and 1-(SS), and double chains in 2-(RR) and 2-(SS).

View Article and Find Full Text PDF

A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

View Article and Find Full Text PDF

A series of seven-coordinate mononuclear lanthanide(III) complexes of the general formula [(TPP)Ln(L(OEt))]·0.25H2O and [(Pc)Ln(L(OEt))] (Ln(3+) = Dy(3+), Tb(3+), Ho(3+), and Gd(3+); TPP = 5,10,15,20-tetraphenylporphyrinate; Pc = phthalocyaninate; L(OEt)(-) = [(η(5)-C5H5)Co(P(=O)(OEt)2)3](-)) are synthesized on the basis of the tripodal ligand L(OEt)(-) and either porphyrin or phthalocyanine ligands. All of the complexes are characterized by X-ray crystallography and by static and dynamic magnetic measurements.

View Article and Find Full Text PDF

Three novel macrocyclic ligands, L1-L3, in which a ferrocene unit and a fluorescent moiety are linked to polyselena rings have been designed and prepared from 1,1'-bis(3-bromopropylseleno)ferrocene. Reaction of L with [M(NCMe)4](PF6)2 (M = Pd and Pt) led to complexes [ML](PF6)2 (M = Pd and Pt). Crystal structure analysis revealed that after complexation, the macrocyclic ligand adopts the unusual c,c,c conformation due to intramolecular C-H···π interactions from the hydrogen atoms of ferrocene moieties to the naphthalene ring.

View Article and Find Full Text PDF

By using the node-and-spacer approach in suitable solvents, four new heterotrimetallic 1D chain-like compounds (that is, containing 3d-3d'-4f metal ions), {[Ni(L)Ln(NO(3))(2)(H(2)O)Fe(Tp*)(CN)(3)]⋅2 CH(3)CN⋅CH(3)OH}(n) (H(2)L = N,N'-bis(3-methoxysalicylidene)-1,3-diaminopropane, Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate; Ln = Gd (1), Dy (2), Tb (3), Nd (4)), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide- and phenolate-bridged heterotrimetallic chain, with a {-Fe-C≡N-Ni(-O-Ln)-N≡C-}(n) repeat unit. Within these chains, each [(Tp*)Fe(CN)(3)](-) entity binds to the Ni(II) ion of the [Ni(L)Ln(NO(3))(2)(H(2)O)](+) motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO(3))(2)(H(2)O)](+) unit is linked to two [(Tp*)Fe(CN)(3)](-) ions through the Ni(II) ion in a trans mode.

View Article and Find Full Text PDF

Four couples of enantiomerically pure chiral seven-coordinated mononuclear lanthanide complexes, [(L(OEt))Dy((R,R)-Salphen)](2)·3H(2)O (1, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene, Salphen = N,N'-1,2-diphenylethylenebis(salicylideneiminato) dianion), [(L(OEt))Dy((S,S)-Salphen)](2)·3H(2)O (2), [(L(OEt))Dy((R,R)-5-Cl-Salcy)]·CH(3)OH·1/8H(2)O (3, Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [(L(OEt))Dy((S,S)-5-Cl-Salcy)]·CH(3)OH·1/8H(2)O (4), [(L(OEt))Tb((R,R)-5-Cl-Salcy)]·CH(3)OH·1/8H(2)O (5), [(L(OEt))Tb((S,S)-5-Cl-Salcy)]·CH(3)OH·1/8H(2)O (6), [(L(OEt))Ho((R,R)-5-Cl-Salcy)]·CH(3)OH·1/8H(2)O (7) and [(L(OEt))Ho((S,S)-5-Cl-Salcy)]·CH(3)OH·1/8H(2)O (8), have been successfully synthesized by using tetradentate chiral salen-type ligands and the Kläui's tripodal ligand of L(OEt). Structural analyses reveal that all compounds have a typical double-decker sandwich structure, and the Ln(iii) ions exhibit a rare seven-coordinated mode, situating in a distorted monocapped triangular prism polyhedron. Circular dichroism (CD) spectra confirm the enantiomeric nature of the optically active complexes and demonstrate that the chirality is successfully transferred from the ligand to the coordination environment of the Ln(iii) ions.

View Article and Find Full Text PDF

By the reactions of Mn(III) Schiff-base complexes with the tricyanometalate building block, [(Tp)Cr(CN)(3)](-) (Tp = Tris(pyrazolyl) hydroborate), two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes, [Mn((R,R)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (1) and [Mn((S,S)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (2) (Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [Mn((R,R)-Salphen)Cr(Tp)(CN)(3)](n) (3) and [Mn((S,S)-Salphen)Cr(Tp)(CN)(3)](n) (4) (Salphen = N,N'-1,2-diphenylethylene-bis(salicylideneiminato) dianion), have been successfully synthesized. Circular dichroism (CD) spectra confirm the enantiomeric nature of the optically active complexes. Structural analyses reveal the formation of neutral cyano-bridged zigzag single chains in 1 and 2, and neutral cyano-bridged zigzag double chains in 3 and 4.

View Article and Find Full Text PDF

Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane.

View Article and Find Full Text PDF

With the use of Kläui's tripodal ligand, [(Cp)Co(P(O)(OEt)(2))(3)](-) (L(CoEt), Cp = cyclopentadiene) as the auxiliary ligand to react with different metal salts and tricyanometalate building blocks, five neutral trimetallic hexanuclear complexes: [(Tp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·6H(2)O (1, Tp = hydridotris(pyrazolyl)borate), [(Tp*)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·2H(2)O (2, Tp* = hydridotris(3,5-dimethyl-pyrazolyl)borate), [(pzTp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·H(2)O·3MeOH (3, pzTp = tetra(pyrazolyl)borate), [(Tp)(2)Fe(2)(CN)(6)Ni(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN·2H(2)O (4) and [(Tp)(2)Fe(2)(CN)(6)Mn(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN (5), have been obtained and structurally characterized. Magnetic measurements confirm that there are ferromagnetic couplings between the cyano-bridged Fe and Cu/or Ni ions and antiferromagnetic interaction between the cyano-bridged Fe and Mn ions. Slow relaxation of the magnetization is observed in complexes 1 and 4, while complex 3 exhibits metamagnetic behavior with a critical field of 17.

View Article and Find Full Text PDF

A new 2D coordination polymer Co3(OH)2(pa)2(ina)2 (1, pa = 3-(1H-benzimidazol-2-yl) propanoic carboxylate, ina = isonicotinate) contained uncommon, linear Co(ii) trimers of mixed Td-Oh-Td geometries, exhibits spin canting below 20 K. Such magnetic behavior mainly arises from the Dzyaloshinski-Moriya interaction from the anisotropic, mixed geometries trimeric Co(II) ions to the crimpled 2D network based on the nature of the binding modes of Co(II)-carboxylate trimer and the effect of the intertrimers arrangement of 1. The mixed single-carboxylate-aromatic amine ligands bridged metal systems display a new structurally authenticated example of a thick 2D layer, and also indicate homometallic Co(II) clusters with Td-Oh-Td mixed-geometries can result in relatively obvious noncompensation moments, according to different efficient spins of Co(II) at very low temperature, in spite of antiferromagnetic intracluster interactions.

View Article and Find Full Text PDF