Publications by authors named "Minxia M He"

Therapeutic peptides (TPeps) have expanded from the initial endogenous peptides to complex modified peptides through medicinal chemistry efforts for almost a century. Different from small molecules and large proteins, the diverse submodalities of TPeps have distinct structures and carry different absorption, distribution, metabolism, and excretion (ADME) properties. There is no distinct regulatory guidance for the industry on conducting ADME studies (what, how, and when) for TPeps.

View Article and Find Full Text PDF

LY377604 has a potential to form 4-hydroxycarbazole, which was reported in the literature as a mutagen. This safety concern led to our investigation of the metabolism and carcinogenicity of LY377604. In in vitro studies with LY377604, 4-hydroxycarbazole was detected in the presence of liver microsomes prepared from different species.

View Article and Find Full Text PDF

We report the novel combination of a selective beta adrenoceptor modulator and a norepinephrine-serotonin uptake inhibitor (sibutramine) with potential for the treatment of obesity. The synthesis and characterization of 6-[4-[2-[[(2S)-3-(9H-carbazol-4-yloxy)-2-hydroxypropyl]amino]-2-methylpropyl]phenoxy]pyridine-3-carboxamide (LY377604), a human β3-adrenergic receptor agonist and β1- and β2-adrenergic receptor antagonist with no sympathomimetic activity at the β1- and β2-adrenergic receptors, is reported. Some in vivo data in both rats and humans is presented.

View Article and Find Full Text PDF

Aim: The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin.

Methods: The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics.

View Article and Find Full Text PDF

Polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene are a major cause of pharmacokinetic variability in human. Although the poor metabolizer phenotype is known to be caused by two null alleles leading to absence of functional CYP2D6 protein, the large variability among individuals with functional alleles remains mostly unexplained. Thus, the goal of this study was to examine the intrinsic enzymatic differences that exist among the several active CYP2D6 allelic variants.

View Article and Find Full Text PDF

Alamifovir, a purine nucleotide analogue prodrug, and its hydrolyzed derivatives have shown preclinical efficacy activity against wild-type and lamivudine-resistant hepatitis B virus. Two studies were conducted to examine the single- and multiple-dose alamifovir pharmacokinetics after oral administration in healthy males. In study 1, subjects were given single doses (0.

View Article and Find Full Text PDF

Dark liver pigmentation was observed in F344 rats in a subchronic toxicology study after daily dosing of LY368842 glycolate. In addition, green-colored urine was observed in some animals. To identify the source of the pigment and its potential for toxic consequences, the liver pigment was isolated from the liver tissue of rats.

View Article and Find Full Text PDF

The metabolism and pharmacokinetics of moxonidine, a potent central-acting antihypertensive agent, were studied in four healthy subjects after a single oral administration of approximately 1 mg (approximately 60 muCi) of [(14)C(3)]moxonidine. Moxonidine was rapidly absorbed, with peak plasma concentration achieved between 0.5 to 2 h postdose.

View Article and Find Full Text PDF

Aims: To test the hypothesis that the renal clearance of moxonidine decreases when dosed with quinidine.

Methods: A randomized, two-period study was conducted with six healthy, male subjects orally dosed with either 0.2 mg moxonidine alone or 1 h after 400 mg quinidine sulphate.

View Article and Find Full Text PDF

The metabolism of moxonidine, 4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methyl-5-pyrimidinamine, LY326869, in rats, mice, dogs, and humans has been examined. At least 17 metabolites were identified or tentatively identified in the different species by HPLC, LC/MS and LC/MS/MS. The identities of seven of the major metabolites have been verified by independent synthesis.

View Article and Find Full Text PDF