Developing disease-suppressive soils is an effective approach for managing soilborne diseases, which can be achieved through crop metabolism and root secretion modification to recruit beneficial soil microbiota. Many factors, such as light, can elicit and modify plant metabolomic activities, resulting in disease suppression. To investigate the impact of light, was planted in a greenhouse and forest, conditioned with three levels of light intensities, including the optimal (15% light transmittance of full light), suboptimal low (5% light transmittance of full light) and suboptimal high (30% light transmittance of full light) intensities.
View Article and Find Full Text PDFReplant failure caused by negative plant-soil feedback (NPFS) in agricultural ecosystems is a critical factor restricting the development of sustainable agriculture. Soil nutrient availability has the capacity to affect plant-soil feedback. Here, we used sanqi (Panax notoginseng), which is severely threatened by NPSF, as a model plant to decipher the overall effects of nitrogen (N) rates on NPSF and the underlying mechanism.
View Article and Find Full Text PDF