ACS Appl Mater Interfaces
January 2025
Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.
View Article and Find Full Text PDFGermanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.
View Article and Find Full Text PDFZeolites are crystalline microporous materials constructed by corner-sharing tetrahedra (SiO and AlO), with many industrial applications as ion exchangers, adsorbents and heterogeneous catalysts. However, the presence of micropores impedes the use of zeolites in areas dealing with bulky substrates. Introducing extrinsic mesopores, that is, intercrystal/intracrystal mesopores, in zeolites is a solution to overcome the diffusion barrier.
View Article and Find Full Text PDFIn this study, we assessed the quantity, strength, and acidity of zeolite composites comprising Silicalite-1 grown on ZSM-5 crystals using a combination of infrared (IR) and solid-state nuclear magnetic resonance (NMR) spectroscopy. The composites were created through the direct growth of Silicalite-1 crystals on ZSM-5 (P_ZSM-5), either with or without the organic structure-directing agent (OSDA) introduced into the ZSM-5 channels (samples: H_ZSM-5_Sil1 and TPA_ZSM-5_Sil1). The results revealed that Silicalite-1 grew differently when the ZSM-5 core was in the H form (empty pores) compared to when the OSDA was still present in the sample.
View Article and Find Full Text PDFThe effective conversion of methane to a mixture of more valuable hydrocarbons and hydrogen under mild conditions is a significant scientific and practical challenge. Here, we synthesized Zn-containing nanosized MFI zeolite for direct oxidation of methane in the presence of HO and air. The presence of the surface hydroxyl groups on nanosized MFI-type zeolite and their significant reduction in the Zn-containing nanosized MFI zeolite were confirmed with Infrared Fourier Transform (FTIR) spectroscopy.
View Article and Find Full Text PDFThe simple preparation of mesoporous NiS//MoS composite catalyst through a one-pot solvothermal method is presented. The improvement of the specific surface area (220 m/g) and the construction of the porous structure are realized by this method in the case of no support. The organics acts as a microscopic binder contribute to uniform stacking of MoS with NiS clusters.
View Article and Find Full Text PDFNumerous pieces of evidence in the literature suggest that zeolitic materials exhibit significant intrinsic flexibility as a consequence of the spring-like behavior of Si-O and Al-O bonds and the distortion ability of Si-O-Si and Al-O-Si angles. Understanding the origin of flexibility and how it may be tuned to afford high adsorption selectivity in zeolites is a big challenge. Zeolite flexibility may be triggered by changes in temperature, pressure, or chemical composition of the framework and extra-framework compounds, as well as by the presence of guest molecules.
View Article and Find Full Text PDFZeolites with uniform micropores are important shape-selective catalysts. However, the external acid sites of zeolites have a negative impact on shape-selective catalysis, and the microporosity may lead to serious diffusion limitation. Herein, we report on the direct synthesis of hierarchical hollow STW-type zeolite single crystals with a siliceous exterior.
View Article and Find Full Text PDFThe utilization of methane for chemical production, often considered as the future of petrochemistry, historically could not compete economically with conventional processes due to higher investment costs. Achieving sustainability and decarbonization of the downstream industry by integration with a methane-to-chemicals process may provide an opportunity to unlock the future for these technologies. Gas-to-chemicals is an efficient tool to boost the decarbonization potential of renewable energy.
View Article and Find Full Text PDFStructural flexibility is an intrinsic feature of zeolites, and the characterization of such dynamic behavior is key to maximizing their performance and realizing their potential in both existing and emerging applications. Here, the flexibility of a high-aluminum nano-sized RHO zeolite is directly visualized with in situ TEM for the first time. Variable temperature experiments directly observe the physical expansion of the discrete nanocrystals in response to changes in both guest-molecule chemistry (Ar vs CO) and temperature.
View Article and Find Full Text PDFSilanols are key players in the application performance of zeolites, yet, their localization and hydrogen bonding strength need more studies. The effects of post-synthetic ion exchange on nanosized chabazite (CHA), focusing on the formation of silanols, were studied. The significant alteration of the silanols of the chabazite nanozeolite upon ion exchange and their effect on the CO adsorption capacity was revealed by solid-state nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR) spectroscopy, and periodic density functional theory (DFT) calculations.
View Article and Find Full Text PDFWell-dispersed PdIn bimetallic alloy nanoparticles (1-4 nm) were immobilized on mesostructured silica by an in situ capture-alloying strategy, and PdIn-InO interfaces were rationally constructed by changing the InO loading and reduction temperature. The catalytic performance for benzyl alcohol partial oxidation was evaluated, and a catalytic synergy was observed. The Pd-rich PdIn-InO interface is prone to be formed on the catalyst with a low InO loading after being reduced at 300 °C.
View Article and Find Full Text PDFThe precise location and role of all types of hydroxyls in zeolites are still enigmatic, and their control permits tailoring of novel properties increasing the efficiency of catalysts and adsorbents in industrial processes for cleaner energy.
View Article and Find Full Text PDFThe identification of acid and nonacid species at the external surface of zeolites remains a major challenge, in contrast to the extensively-studied internal acid sites. Here, it is shown that the synthesis of zeolite ZSM-5 samples with distinct particle sizes, combined with solid-state NMR and computational studies of trimethylphosphine oxide (TMPO) adsorption, provides insight into the chemical species on the external surface of the zeolite crystals. H- P HETCOR NMR spectra of TMPO-loaded zeolites exhibit a broad correlation peak at δ ∼35-55 ppm and δ ∼5-12 ppm assigned to external SiOH species.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2022
While the use of nanozeolites for cancer treatment holds a great promise, it also requires a better understanding of the interaction between the zeolite nanoparticles and cancer cells and notably their internalization and biodistribution. It is particularly important in situation of hypoxia, a very common situations in aggressive cancers, which may change the energetic processes required for cellular uptake. Herein, we studied, in vitro, the kinetics of the internalization process and the intracellular localization of nanosized zeolite X (FAU-X) into glioblastoma cells.
View Article and Find Full Text PDFPerovskite quantum dots (PQDs) have been widely studied due to the outstanding light emission properties including high quantum efficiency, narrow linewidths and electron transport properties. However, poor stability limits their implication in optical devices, especially working at ambient conditions in the presence of moisture that rapidly attenuate their performance. In this work, PQDs were loaded in nanosized EMT zeolite crystals synthesized from template-free precursor systems resulting in a composite EMT-CsPbBr.
View Article and Find Full Text PDFThe mesopores formation in zeolite crystals has long been considered to occur through the stochastic hydrolysis and removal of framework atoms. Here, we investigate the NH F etching of representative small, medium, and large pore zeolites and show that the zeolite dissolution behavior, therefore the mesopore formation probability, is dominated by zeolite architecture at both nano- and sub-nano scales. At the nano-scale, the hidden mosaics of zeolite structure predetermine the spatio-temporal dissolution of the framework, hence the size, shape, location, and orientation of the mesopores.
View Article and Find Full Text PDFThe preparation of defect-free MFI crystals containing single-site framework Mo through a hydrothermal postsynthesis treatment is reported. The insertion of single Mo sites in the MFI zeolite samples with different crystal sizes of 100, 200, and 2000 nm presenting a diverse concentration of silanol groups is revealed. The nature of the silanols and their role in the incorporation of Mo into the zeolite structure are elucidated through an extensive spectroscopic characterization (Si NMR, H NMR, P NMR, and IR) combined with X-ray diffraction and HRTEM.
View Article and Find Full Text PDFZeolite Y and its ultra-stabilized hierarchical derivative (USY) are the most widely used zeolite-based heterogeneous catalysts in oil refining, petrochemisty, and other chemicals manufacturing. After almost 60 years of academic and industrial research, their resilience is unique as no other catalyst displaced them from key processes such as FCC and hydrocracking. The present study highlights the key difference leading to the exceptional catalytic performance of USY versus the parent zeolite Y in a multi-technique study combining advanced spectroscopies (IR and solid-state NMR) and molecular modeling.
View Article and Find Full Text PDFA balance between catalytic activity and product selectivity remains a dilemma for the partial oxidation processes because the products are prone to be overoxidized. In this work, we report on the partial oxidation of benzyl alcohol using a modified catalyst consisting of nanosized Au-Pd particles (NPs) with tin oxide (SnO) deposited on a mesoporous silica support. We found that the SnO promotes the autogenous reduction of PdO to active Pd species on the Au-Pd NP catalyst (SnO@AP-ox) before H reduction, which is due to the high oxophilicity of Sn.
View Article and Find Full Text PDFZeolites have been game-changing materials in oil refining and petrochemistry over the last 60 years and have the potential to play the same role in the emerging processes of the energy and environmental transition. Although zeolites are crystalline inorganic solids, their structures are not perfect and the presence of defect sites - mainly Brønsted acid sites and silanols - influences their thermal and chemical resistance as well as their performances in key areas such as catalysis, gas and liquid separations and ion-exchange. In this paper, we review the type of defects in zeolites and the characterization techniques used for their identification and quantification with the focus on diffraction, spectroscopic and modeling approaches.
View Article and Find Full Text PDFA clear understanding of the crystal formation pathways of zeolites remains one of the most challenging issues to date. Here we investigate the synthesis of nanosized chabazite (CHA) zeolites using organic template-free colloidal suspensions by varying the time of aging at room temperature and the time of hydrothermal treatment at 90 °C. The role of mixed alkali metal cations (Na, K, Cs) on the formation of CHA in the colloidal suspensions was studied.
View Article and Find Full Text PDFHierarchical zeolites are regarded as promising catalysts due to their well-developed porosity, increased accessible surface area, and minimal diffusion constraints. Thus far, the focus has been on the creation of mesopores in zeolites, however, little is known about a microporosity upgrading and its effect on the diffusion and catalytic performance. Here the authors show that the "birth" of mesopore formation in faujasite (FAU) type zeolite starts by removing framework T atoms from the sodalite (SOD) cages followed by propagation throughout the crystals.
View Article and Find Full Text PDF