Publications by authors named "Minsuok Kim"

Purpose: This study aimed to determine the association between functional impairment in small airways and symptoms of dyspnea in patients with Long-coronavirus disease (COVID), using imaging and computational modeling analysis.

Patients And Methods: Thirty-four patients with Long-COVID underwent thoracic computed tomography and hyperpolarized Xenon-129 magnetic resonance imaging (HP Xe MRI) scans. Twenty-two answered dyspnea-12 questionnaires.

View Article and Find Full Text PDF

Objectives: To investigate the utility of hyperpolarized xenon-129 (HPX) gas-exchange magnetic resonance imaging (MRI) and modeling in a chronic obstructive pulmonary disease (COPD) cohort in comparison to a minimal CT-diagnosed emphysema (MCTE) cohort and a healthy cohort.

Methods: A total of 25 subjects were involved in this study including COPD (n = 8), MCTE (n = 3), and healthy (n = 14) subjects. The COPD subjects were scanned using HPX ventilation, gas-exchange MRI, and volumetric CT.

View Article and Find Full Text PDF

To investigate the motion of virus-laden droplets between moving passengers in line, we performed numerical simulations of the distribution of airborne droplets within a geometrically detailed model similar to an actual escalator. The left and right sides and the ceiling of the escalator model were surrounded by walls, assuming a subway used by many people every day with concern to virus-laden droplets. Steps and handrails were incorporated in the model to faithfully compute the escalator-specific flow field.

View Article and Find Full Text PDF

Background Post-COVID-19 condition encompasses symptoms following COVID-19 infection that linger at least 4 weeks after the end of active infection. Symptoms are wide ranging, but breathlessness is common. Purpose To determine if the previously described lung abnormalities seen on hyperpolarized (HP) pulmonary xenon 129 (Xe) MRI scans in participants with post-COVID-19 condition who were hospitalized are also present in participants with post-COVID-19 condition who were not hospitalized.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) may severely impair pulmonary function and cause hypoxia. However, the association of COVID-19 pneumonia on CT with impaired ventilation remains unexplained. This pilot study aims to demonstrate the relationship between the radiological findings on COVID-19 CT images and ventilation abnormalities simulated in a computational model linked to the patients' symptoms.

View Article and Find Full Text PDF

We have performed highly accurate numerical simulations to investigate prolonged dispersion of novel coronavirus-laden droplets in classroom air. Approximately 10,900 virus-laden droplets were released into the air by a teacher coughing and tracked for 90 min by numerical simulations. The teacher was standing in front of multiple students in a classroom.

View Article and Find Full Text PDF

Background The full-scale airway network (FAN) flow model shows excellent agreement with limited functional imaging data but requires further validation prior to clinical use. Purpose To validate the ventilation distributions computed with the FAN flow model with xenon ventilation from xenon-enhanced dual-energy (DE) CT in participants with chronic obstructive pulmonary disease (COPD). Materials and Methods In this prospective study, the FAN model extracted structural data from xenon-enhanced DE CT images of men with COPD scanned between June 2012 and July 2013 to compute gas ventilation dynamics.

View Article and Find Full Text PDF

Background The lack of functional information in thoracic CT remains a limitation of its use in the clinical management of chronic obstructive pulmonary disease (COPD). Purpose To compare the distribution of pulmonary ventilation assessed by a CT-based full-scale airway network (FAN) flow model with hyperpolarized xenon 129 (Xe) MRI (hereafter, Xe MRI) and technetium 99m-diethylenetriaminepentaacetic acid aerosol SPECT ventilation imaging (hereafter, V-SPECT) in participants with COPD. Materials and Methods In this prospective study performed between May and August 2017, pulmonary ventilation in participants with COPD was computed by using the FAN flow model.

View Article and Find Full Text PDF

Purpose: To derive lobar ventilation in patients with chronic obstructive pulmonary disease (COPD) using a rapid time-series hyperpolarized xenon-129 (HPX) magnetic resonance imaging (MRI) technique and compare this to ventilation/perfusion single-photon emission computed tomography (V/Q-SPECT), correlating the results with high-resolution computed tomography (CT) and pulmonary function tests (PFTs).

Materials And Methods: Twelve COPD subjects (GOLD stages I-IV) participated in this study and underwent HPX-MRI, V/Q-SPECT/CT, high-resolution CT, and PFTs. HPX-MRI was performed using a novel time-series spiral k-space sampling approach.

View Article and Find Full Text PDF

The upper airways play a significant role in the tracheal flow dynamics. Despite many previous studies, however, the effect of the upper airways on the ventilation distribution in distal airways has remained a challenge. The aim of this study is to experimentally and computationally investigate the dynamic behaviour in the intratracheal flow induced by the upper respiratory tract and to assess its influence on the subsequent tributaries.

View Article and Find Full Text PDF

Background: Knowledge of airflow patterns in the large airways is of interest in obstructive airways disease and in the development of inhaled therapies. Computational fluid dynamics (CFD) simulations are used to study airflow in realistic airway models but usually need experimental validation.

Purpose: To develop MRI-based methods to study airway flow in realistic 3D-printed models.

View Article and Find Full Text PDF

Complex flow patterns exist within the asymmetric branching airway network in the lungs. These flow patterns are known to become increasingly heterogeneous during disease as a result of various mechanisms such as bronchoconstriction or alterations in lung tissue compliance. Here, we present a coupled model of tissue deformation and network airflow enabling predictions of dynamic flow properties, including temporal flow rate, pressure distribution, and the occurrence of reverse flows.

View Article and Find Full Text PDF

Modeling of the cerebrospinal fluid (CSF) system in the spine is strongly motivated by the need to understand the origins of pathological conditions such as the emergence and growth of fluid-filled cysts in the spinal cord. In this study, a one-dimensional (1D) approximation for the flow in elastic conduits was used to formulate a model of the spinal CSF compartment. The modeling was based around a coaxial geometry in which the inner elastic cylinder represented the spinal cord, middle elastic tube represented the dura, and the outermost tube represented the vertebral column.

View Article and Find Full Text PDF

Coiling is possibly the most widespread endovascular treatment for intracranial aneurysms. It consists in the placement of metal wires inside the aneurysm to promote blood coagulation. This work presents a virtual coiling technique for pre-interventional planning and post-operative assessment of coil embolization procedure of aneurysms.

View Article and Find Full Text PDF

Introduction: Minimally invasive treatment approaches, like the implantation of percutaneous stents, are becoming more popular every day for the treatment of intracranial aneurysms. The outcome of such treatments is related to factors like vessel and aneurysm geometry, hemodynamic conditions and device design. For this reason, having a tool for assessing stenting alternatives beforehand is crucial.

View Article and Find Full Text PDF

Objective: The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture.

Methods: For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture.

View Article and Find Full Text PDF

There is a general lack of quantitative understanding about how specific design features of endovascular stents (struts and mesh design, porosity) affect the hemodynamics in intracranial aneurysms. To shed light on this issue, we studied two commercial high-porosity stents (Tristar stent and Wallstent) in aneurysm models of varying vessel curvature as well as in a patient-specific model using Computational Fluid Dynamics. We investigated how these stents modify hemodynamic parameters such as aneurysmal inflow rate, stasis, and wall shear stress, and how such changes are related to the specific designs.

View Article and Find Full Text PDF

Objective: The porous intravascular stents that are currently available may not cause complete aneurysm thrombosis and may therefore fail to provide durable protection against aneurysm rupture when used as a sole treatment modality. The goal of this study was to quantify the effects of porous stents on aneurysm hemodynamics using computational fluid dynamics.

Methods: The geometry of a wide-necked saccular basilar trunk aneurysm was reconstructed from a patient's computed tomographic angiography images.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying how blood flows in brain aneurysms using a method called computational fluid dynamics (CFD) to help improve medical treatments.
  • They created a silicone model of an aneurysm and compared the actual flow patterns they measured with predictions from the CFD simulations.
  • The study found that when the CFD used the exact shape of the model, the results matched well, but small changes in the model's shape could cause important differences in blood flow behavior.
View Article and Find Full Text PDF

Stenting may provide a new, less invasive therapeutic option for cerebral aneurysms. However, a conventional porous stent may be insufficient in modifying the blood flow for clinical aneurysms. We designed an asymmetric stent consisting of a low porosity patch welded onto a porous stent for an anterior cerebral artery aneurysm of a specific patient geometry to block the strong inflow jet.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione5bpmutgctfi53qlu3aoucg3p41plhqq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once