Publications by authors named "Minsky D"

The role of muscular left ventricular (LV) false tendons (FTs) is poorly understood. To gain insight into their pathophysiologic significance, we adapted echocardiographic LV strain imaging software to measure LVFT longitudinal strain in subjects with normal left ventricles and in patients who sustained previous anterior wall myocardial infarction (AWMI). GE EchoPAC software was used to measure longitudinal strain in LVFTs ≥0.

View Article and Find Full Text PDF

(1) Background: The CT-based attenuation correction of SPECT images is essential for obtaining accurate quantitative images in cardiovascular imaging. However, there are still many SPECT cameras without associated CT scanners throughout the world, especially in developing countries. Performing additional CT scans implies troublesome planning logistics and larger radiation doses for patients, making it a suboptimal solution.

View Article and Find Full Text PDF

The reconstruction of positron emission tomography images is a computationally intensive task which benefits from the use of increasingly complex physical models. Aiming to reduce the computational burden by means of a reduced system matrix, we present a list mode reconstruction approach based on maximum likelihood-expectation maximization and a sliced mesh support. The reconstruction strategy uses a fully 3D projection along series of 2D meshes arranged in the axial plane of the scanner.

View Article and Find Full Text PDF

Existing and active low-energy Accelerator-Based BNCT programs worldwide will be reviewed and compared. In particular, the program in Argentina will be discussed which consists of the development of an Electro-Static-Quadrupole (ESQ) Accelerator-Based treatment facility. The facility is conceived to operate with the deuteron-induced reactions Be(d,n)B and C(d,n)N at 1.

View Article and Find Full Text PDF

Aim: This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT).

Background: There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines.

View Article and Find Full Text PDF

In this work we provide some information on the present status of accelerator-based BNCT (AB-BNCT) worldwide and subsequently concentrate on the recent accelerator technology developments in Argentina.

View Article and Find Full Text PDF

(7)Li(p,n)(7)Be is an endothermic reaction and working near its threshold (1.88 MeV) has the advantage of neutron spectra with maximum energies of about 100 keV, considerably lower than at higher beam energies, or than using other neutron-producing reactions or as for the uranium fission spectrum, relevant for BNCT based on nuclear reactors. With this primary energy it is much easier to obtain the energies needed for treating deep seated tumors by BNCT (about 10 keV).

View Article and Find Full Text PDF

The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed.

View Article and Find Full Text PDF

Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV.

View Article and Find Full Text PDF

In the frame of accelerator-based BNCT, the (9)Be(d,n)(10)B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40Gy-Eq, with a maximum value of 51Gy-Eq at a depth of about 2.

View Article and Find Full Text PDF

The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.

View Article and Find Full Text PDF

Purpose: Encouraging Boron Neutron Capture Therapy (BNCT) clinical results obtained in recent years have stimulated intense research to develop accelerator-based neutron sources to be installed in clinical facilities. In this work an assessment of an accelerator-based BNCT facility for the treatment of different tumor targets was performed, comparing the accelerator-derived results with reported reactor-based trials under similar conditions and subjected to the same clinical protocols.

Materials And Methods: A set of real image studies was used to cover clinical-like cases of brain and head-and-neck tumors.

View Article and Find Full Text PDF

This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina.

View Article and Find Full Text PDF

Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

View Article and Find Full Text PDF

A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction (7)Li(p,n)(7)Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations.

View Article and Find Full Text PDF

There has been increasing interest in combining Boron Neutron Capture Therapy (BNCT) with standard radiotherapy, either concomitantly or as a BNCT treatment of a recurrent tumor that was previously irradiated with a medical electron linear accelerator (LINAC). In this work we report the simulated dosimetry of treatments combining X-rays and BNCT.

View Article and Find Full Text PDF

We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction.

View Article and Find Full Text PDF

In the range of low bombarding energies (less than about 1.5 MeV) the (9)Be(d,n)(10)B reaction produces neutron spectra that can be moderated depending on the choice of the target thickness and the deuteron bombarding energy. In this work, a Monte Carlo simulation study to determine the capability of this reaction to deliver enough dose to efficiently control both skin and deep seated tumors has been performed by means of MCNP calculations using eight optimized (9)Be targets.

View Article and Find Full Text PDF

This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown.

View Article and Find Full Text PDF

This article reports on the development of a prototype of a SPECT tomograph system for online dosimetry in BNCT based on LaBr(3)(Ce) scintillation detectors. The setup shielding was optimized to be used in the accelerator based BNCT facility of the University of Birmingham. The system was designed and built.

View Article and Find Full Text PDF

In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.

View Article and Find Full Text PDF

Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon, and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low.

View Article and Find Full Text PDF

Microdistributions of the prospective BNCT-compound CuTCPH, a carborane-containing tetraphenylporphyrin with one Cu atom in its molecular structure, have been obtained in tissue sections of different organs of tumor-bearing and normal Syrian hamsters injected with the boron compound by employing a heavy ion microbeam. High resolution X-ray spectroscopy following micro-PIXE (Particle Induced X-ray Emission with micrometer-sized beams) with a focused (16)O ion beam was used. Focusing was performed with a heavy-ion scanning high-precision magnetic quadrupole triplet microprobe.

View Article and Find Full Text PDF