Publications by authors named "Minsi Li"

Black phosphorus quantum dots (BPQDs) have shown promising applications in biosensors and energy storage devices. However, the electrochemiluminescence (ECL) properties of pristine BPQDs in an organic system have rarely been reported. In this paper, ,'-dimethylformamide passivated BPQDs with a small size of 2.

View Article and Find Full Text PDF

The advancement of all-solid-state lithium metal batteries requires breakthroughs in solid-state electrolytes (SSEs) for the suppression of lithium dendrite growth at high current densities and high capacities (>3 mAh cm) and innovation of SSEs in terms of crystal structure, ionic conductivity and rigidness. Here we report a superionic conducting, highly lithium-compatible and air-stable vacancy-rich β-LiN SSE. This vacancy-rich β-LiN SSE shows a high ionic conductivity of 2.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) has an extremely poor prognosis. Recent studies have suggested that mitophagy-related genes (MRGs) are closely correlated with the development and occurrence of cancer, but the role they play in oral cancer has not yet been explained.We conducted a comprehensive analysis of integrated single-cell and bulk RNA sequencing (RNA-seq) data retrieved from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, LiInCl, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport.

View Article and Find Full Text PDF

Attaining substantial areal capacity (>3 mAh/cm) and extended cycle longevity in all-solid-state lithium metal batteries necessitates the implementation of solid-state electrolytes (SSEs) capable of withstanding elevated critical current densities and capacities. In this study, we report a high-performing vacancy-rich LiNCl SSE demonstrating excellent lithium compatibility and atmospheric stability and enabling high-areal capacity, long-lasting all-solid-state lithium metal batteries. The LiNCl facilitates efficient lithium-ion transport due to its disordered lattice structure and presence of vacancies.

View Article and Find Full Text PDF

The development of solid-state sodium-ion batteries (SSSBs) heavily hinges on the development of an superionic Na conductor (SSC) that features high conductivity, (electro)chemical stability, and deformability. The construction of heterogeneous structures offers a promising approach to comprehensively enhancing these properties in a way that differs from traditional structural optimization. Here, this work exploits the structural variance between high- and low-coordination halide frameworks to develop a new class of halide heterogeneous structure electrolytes (HSEs).

View Article and Find Full Text PDF

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl] octahedra and generate a tetrahedron-assisted Li ion diffusion pathway.

View Article and Find Full Text PDF

This paper presents the reverse priority impedance control of manipulators with reference to redundant robots of a given task. The reverse priority kinematic control of redundant manipulators is first expressed in detail. The motion in the joint space is derived following the opposite order compared with the classical task priority-based solution.

View Article and Find Full Text PDF

Numerous efforts are made to improve the reversible capacity and long-term cycling stability of Li-S cathodes. However, they are susceptible to irreversible capacity loss during cycling owing to shuttling effects and poor Li transport under high sulfur loading. Herein, a physically and chemically enhanced lithium sulfur cathode is proposed to address these challenges.

View Article and Find Full Text PDF

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes.

View Article and Find Full Text PDF

Platinum-based chemotherapy is used for non-small cell lung cancer (NSCLC). However, it has side effects and minimum efficacy against lung cancer metastasis. In this study, platinum-curcumin complexes were loaded into pH and redox dual-responsive nanoparticles (denoted as Pt-CUR@PSPPN) to facilitate intracellular release and synergistic anti-cancer effects.

View Article and Find Full Text PDF

Nanoparticle formulations have proven effective for cisplatin delivery. However, the development of a versatile nanoplatform for cisplatin-based combination cancer therapies still remains a great challenge. : In this study, we developed a one-pot synthesis method for a microporous organosilica shell-coated cisplatin nanoplatform using a reverse microemulsion method, and explored its application in co-delivering acriflavine (ACF) for inhibiting hypoxia-inducible factor-1 (HIF-1).

View Article and Find Full Text PDF

Bmi-1 is a gene related to malignant transformation in hepatocellular carcinoma (HCC). The liver cancer cells developed the ability to tolerate CDDP treatment with the elevation of Bmi-1. Bmi-1 is also an oncogene promoting malignance of tumor and an anti-cancer target in many studies.

View Article and Find Full Text PDF

Osteosarcoma is the bone tumor that most commonly affects children and teenagers with low survival rate because of metastatic relapse or recurrence. Cisplatin is a first-line chemotherapy for osteosarcoma. However, severe side effects limit its use in clinic.

View Article and Find Full Text PDF

Hypoxia, acidosis and high level of glutathione (GSH) are characteristic abnormalities of the tumor microenvironment (TME), which promote tumor progression, metastasis, and resistance to therapies. Previous attempts to improve therapeutic efficacy were limited to modifying individual TME elements. In this study, we proposed a comprehensive TME modulation strategy that modifies multiple elements of the TME in order to enhance cisplatin anticancer efficacy.

View Article and Find Full Text PDF

Cisplatin (CDDP), a widely used chemotherapeutic agent against hepatocellular carcinoma (HCC), faces severe resistance and hepatotoxicity problems which can be alleviated through combination therapy. The objective of this study was to develop a pH-dependent calcium carbonate nano-delivery system for the combination therapy of CDDP with oleanolic acid (OA). A microemulsion method was employed to generate lipid coated cisplatin/oleanolic acid calcium carbonate nanoparticles (CDDP/OA-LCC NPs), and the loading concentration of CDDP and OA was measured by atomic absorption spectroscopy and HPLC respectively.

View Article and Find Full Text PDF

A competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn-Co atomic pairs coordinated on N doped carbon support (Zn/CoN-C). Such architecture offers enhanced binding ability of O , significantly elongates the O-O length (from 1.23 Å to 1.

View Article and Find Full Text PDF

Carbonate-based electrolytes demonstrate safe and stable electrochemical performance in lithium-sulfur batteries. However, only a few types of sulfur cathodes with low loadings can be employed and the underlying electrochemical mechanism of lithium-sulfur batteries with carbonate-based electrolytes is not well understood. Here, we employ in operando X-ray absorption near edge spectroscopy to shed light on a solid-phase lithium-sulfur reaction mechanism in carbonate electrolyte systems in which sulfur directly transfers to LiS without the formation of linear polysulfides.

View Article and Find Full Text PDF

Silicon (Si) possesses the highest theoretical capacity as an anode material for lithium-ion batteries, and many efforts have been made to address the poor cycling stability issue that is associated with its huge volume changes during Li-Si alloying/de-alloying processes, mostly through the design of nanostructured materials. Herein, we report a simple cell configuration approach to improve the lithium storage performance of commercial nano-Si through the insertion of carbon nanofiber films (CNFs) as interlayers between the Si electrodes and separators. For this advanced cell configuration, commercial Si nanoparticle (Si NP) electrodes demonstrate a significantly improved reversible capacity (2700 mA h g-1 after 40 cycles at 50 mA g-1) and an ultralong cycle life (1250 mA h g-1 after 430 cycles at 1500 mA g-1).

View Article and Find Full Text PDF

Unlabelled: Sorafenib is a first-line drug for hepatocellular carcinoma (HCC). Autophagy has been shown to facilitate sorafenib resistance. miR-375 has been shown to be an inhibitor of autophagy.

View Article and Find Full Text PDF

Multidrug resistance to chemotherapeutic drugs is a major obstacle to breast cancer treatment. In this study, doxorubicin (DOX) and imatinib (IM) were co-loaded into folate receptor targeted (FR-targeted) pH-sensitive liposomes (denoted as FPL-DOX/IM) to fulfill intracellular acid-sensitive release and reverse drug resistance. FPL-DOX/IM could maintain stability in blood circulation with approximate diameters of 100 nm and rapidly release encapsulated drugs in tumor acidic microenvironment.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a prevalent and lethal disease that is characterized by drug resistance. Doxorubicin (DOX) is a widely used chemotherapeutic drug and miR-375 has been shown to be a tumor suppressor in HCC. Here, we reported that miR-375 and DOX co-loaded into lipid-coated calcium carbonate nanoparticles (LCC-DOX/miR-375 NPs), enhanced the anti-tumor effects through combination therapy, and were highly effective in reversing drug resistance in HCC.

View Article and Find Full Text PDF

Red phosphorus (P) has attracted intense attention as promising anode material for high-energy density sodium-ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g ). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework-8 (ZIF-8) -derived nitrogen-doped microporous carbon matrix (denoted as P@N-MPC).

View Article and Find Full Text PDF

Red phosphorus (P) have been considered as one of the most promising anode material for both lithium-ion batteries (LIBs) and (NIBs), because of its high theoretical capacity. However, natural insulating property and the large volume expansion of red P during cycling lead to poor cyclability and low rate performance, which prevents its practical application. Here, we significantly improves both lithium storage and sodium storage performance of red P by confining nanosized amorphous red P into the mesoporous carbon matrix (P@CMK-3) using a vaporization-condensation-conversion process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjuibjl5rsn20urrt8nkou1cnf40jjef6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once