This article proposes a novel damage detection method based on the sensitivity analysis and chaotic moth-flame-invasive weed optimization (CMF-IWO), which is utilized to simultaneously identify the damage of structural elements and bearings. First, the sensitivity coefficients of eigenvalues to the damage factors of structural elements and bearings are deduced, the regularization technology is used to solve the problem of equation undetermined, meanwhile, the modal strain energy-based index is utilized to detect the damage locations, and the regularization objective function is constructed to quantify the damage severity. Then, for the subsequent procedure of damage detection, CMF-IWO is proposed based on moth-flame optimization and invasive weed optimization as well as chaos theory, reverse learning, and evolutional strategy.
View Article and Find Full Text PDFBridge expansion and contraction installation (BECI) has proved to be an indispensable component of bridge structures due to its stability, comfort, and durability benefits. At present, conventional replacement technologies for modular-type, comb plate-type, and seamless-type BECIs are widely applied worldwide. However, it is unfortunate that there remains no systematic research on quantitative assessment approaches for evaluating the overall technical status and selecting optimal replacement methods for existing BECIs.
View Article and Find Full Text PDF