Environ Sci Pollut Res Int
February 2024
Peroxidase-like based on double transition metals have higher catalytic activity and are considered to have great potential for application in the field of pollutant degradation. First, in this paper, a novel Fe-doped three-dimensional porous Fe@FeMn-NC-like peroxidase was synthesized by a simple one-step thermal reduction method. The doping of manganese was able to reduce part of the iron in Fe-Mn binary oxides to Fe at high temperatures.
View Article and Find Full Text PDFSulfamethoxazole (SMX) is a widely used antibiotic to treat bacterial infections prevalent among humans and animals. SMX undergoes several transformation pathways in living organisms and external environments. Therefore, the development of efficient remediation methods for treating SMX and its metabolites is needed.
View Article and Find Full Text PDFPolymer carbon nitride is considered to be a promising photocatalyst with broad application prospects in water treatment. However, the defects of pristine polymer carbon nitride (PCN), such as small specific surface area, fast photogenerated electron-hole recombination, and low mass transfer efficiency, limit its photocatalytic activity. In this work, by introducing 2-thiouracil into the precursor, a carbonyl heterocycle-containing mesoporous carbon nitride photocatalyst (TCN) was successfully obtained with significantly enhanced peroxydisulfate (PDS) photocatalytic activity.
View Article and Find Full Text PDFBimetallic catalysts are often used for peroxymonosulfate (PMS) activation in recent years due to the synergistic effects between two different metal species. However, the synergy between Zn and other transition metal in PMS activation are rarely studied because of the ease of evaporation of Zn species at high temperature. In this work, a Co/Zn co-doped carbonaceous catalyst derived from ZIF-67@ZIF-8 (Z67@8D) was prepared successfully by the core-shell replacement strategy, and used to activate PMS for sulfamethoxazole (SMX) degradation.
View Article and Find Full Text PDFAs an emerging peroxymonosulfate (PMS) activation catalyst, graphitic carbon nitride (g-CN) is non-toxic and eco-friendly, while its poor catalytic performance hinders the application of pristine g-CN. Herein, a simple LiCl/KCl molten salts-assisted thermal polymerization method was adopted to promote the photocatalytic performance of g-CN. With the insertion of Li/K dopants and the introduction of surface cyano defects, the modified catalyst exhibited greatly enhanced ability on PMS activation towards acetaminophen removal, observing a 13 times higher rate constant than pristine g-CN (k = 0.
View Article and Find Full Text PDFPolymeric carbon nitride (PCN) has been extensively employed in peroxymonosulfate (PMS) activation for water decontamination. However, limited photocatalytic efficiency can be achieved by pristine PCN due to its intrinsic deficiencies like high electron-hole recombination rate and resistance to charge transfer. Herein, in a two-stage thermal treatment process, the nontoxic and stable Na and K were successfully anchored among the PCN skeleton with surface defects created, leading to an elevated photocatalytic activity for PMS activation.
View Article and Find Full Text PDFFunctional nMnOx@RBC composites were synthesized via a simple co-precipitation method. The nanomaterials have efficient activity in activating peroxymonosulfate (PMS) for removal of chlorophenols (CPs). Rice husk biochar (RBC) could support nMnOx, and acted as an electron shuttle to mediate electron transfer reaction.
View Article and Find Full Text PDFThe metal-free graphitic carbon nitride is a promising photocatalyst for peroxymonosulfate (PMS) activation towards water decontamination, but bearing low efficiency due to its electronic structure and surface chemistry. Herein, the non-metallic element boron was adopted for catalyst development. The boron dopants and defects were simultaneously introduced by potassium borohydride, resulting in an excellent activity towards PMS activation.
View Article and Find Full Text PDFIn this study, manganese peroxidase (MnP) was applied to induce the in vitro oxidation of sulfamethoxazole (SMX). The results indicated that 87.04% of the SMX was transformed and followed first-order kinetics (k=0.
View Article and Find Full Text PDFA series of MoN/HZSM-5 and transition metal modified MoN/HZSM-5 catalysts were prepared for the catalytic upgrading of pine wood-derived pyrolytic vapors for the selective production of monocyclic aromatic hydrocarbons (MAHs), while restraining the formation of polycyclic aromatic hydrocarbons (PAHs). Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were performed to determine the effects of several factors on selective MAHs production, including MoN loading on HZSM-5, transition metal (Fe, Ce, La, Cu, Cr) modification of MoN/HZSM-5, pyrolysis temperature, and catalyst-to-biomass ratio. In addition, quantitative experiments were conducted to determine the actual yields of major aromatic hydrocarbons and the source of aromatic hydrocarbons from basic biomass components.
View Article and Find Full Text PDFA new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with KPO in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas.
View Article and Find Full Text PDFThe highly selective hydrogenation/hydrolytic ring-opening reaction of 5-hydroxymethylfuraldehyde (5-HMF) was catalyzed by homogeneous Cp*Ir(III) half-sandwich complexes to produce 1-hydroxy-2,5-hexanedione (HHD). Adjustment of pH was found to regulate the distribution of products and reaction selectivity, and full conversion of 5-HMF to HHD with 99 % selectivity was achieved at pH 2.5.
View Article and Find Full Text PDFUsing a metal triflate and Pd/C as catalysts, alkanes were prepared from bioderived furans in a one-pot hydrodeoxygenation (HDO) process. During the reaction, the metal triflate plays a crucial role in the ring-opening HDO of furan compounds. The entire reaction process has goes through two major phases: at low temperatures, saturation of the exocyclic double bond and furan ring are catalyzed by Pd/C; at high temperatures, the HDO of saturated furan compounds is catalyzed by the metal triflate.
View Article and Find Full Text PDF2,5-Furandicarboxylic acid (FDCA) is considered to be a promising replacement for terephthalic acid since they share similar structures and properties. In contrast to FDCA, 2,5-furandicarboxylic acid methyl (FDCAM) has properties that allow it to be easily purified. In this work, we reported an oxidative esterification of 5-hydroxymethylfurfural (HMF) and furfural to prepare corresponding esters over Cox Oy -N@C catalysts using O2 as benign oxidant.
View Article and Find Full Text PDF