While development of a sodium-ion battery (SIB) cathode has been approached by various routes, research on compatible anodes for advanced SIB systems has not been sufficiently addressed. The anode materials based on titanium oxide typically show low electrical performances in SIB systems primarily due to their low electrical/ionic conductivity. Thus, in this work, layered titanium oxides were hybridized with covalent organic nanosheets (CONs), which exhibited excellent electrical conductivity, to be used as anodes in SIBs.
View Article and Find Full Text PDFGe/RuO nanocomposites were successfully fabricated as anode materials for lithium-ion batteries using RuO nanosheets and Ge/GeO nanoparticles (NPs). X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analyses showed that elemental Ge nanoparticles were distributed onto the rutile-type RuO. Transmission electron microscopy images showed well-dispersed Ge nanoparticles embedded in rutile-type RuO.
View Article and Find Full Text PDFIn this study, reduced graphene oxide (RGO) with a hollow nanostructure was successfully synthesized by layer-by-layer self-assembly using electrostatic interactions and van der Waals forces between building blocks, and its lithium storage characteristics were investigated. After 800 cycles at a current density of 1 A/g, the microwave-irradiated RGO hollow spheres (MRGO-HS) maintained a capacity of 626 mA h/g. In addition, when the charge/discharge capacity was measured stepwise in the current density range of 0.
View Article and Find Full Text PDFInvited for this month's cover are the groups of Jae-Min Oh, Jin Kuen Park, and Seung-Min Paek at three different universities in South Korea. The image shows how the supramolecular interaction between two different two-dimensional materials can control the electrical storage properties for a sodium-ion battery. The Full Paper itself is available at 10.
View Article and Find Full Text PDFTo investigate the effect of electrical conductivity on the energy-storage characteristics of anode materials in sodium-ion batteries, covalent organic nanosheets (CONs) are hybridized with highly conductive graphene nanosheets (GNs) via two different optimized synthesis routes, that is, reflux and solvothermal methods. The reflux-synthesized hybrid shows a well-overlapped 2D structure, whereas the solvothermally prepared hybrid forms a segregated phase in which the contact area between the CONs and GNs is reduced. These two hybrids synthesized by facile methods are fully characterized, and the results reveal that their energy-storage properties can be significantly improved by enhancing the electrical conductivity via the formation of a well-overlapped structure between CONs and GNs.
View Article and Find Full Text PDFSilver oxide nanoparticles with controlled particle size were successfully obtained utilizing citrate-intercalated layered double hydroxide (LDH) as a substrate and Ag as a precursor. The lattice of LDH was partially dissolved during the reaction by Ag. The released hydroxyl and citrate acted as a reactant in crystal growth and a size controlling capping agent, respectively.
View Article and Find Full Text PDF