Crit Rev Biotechnol
September 2024
Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the and as two prominent chassis.
View Article and Find Full Text PDFThe alarming rise in antibiotic resistance necessitates urgent action, particularly against the backdrop of resistant bacteria evolving to render conventional antibiotics less effective, leading to an increase in morbidity, mortality, and healthcare costs. Vancomycin-loaded Metal-Organic Framework (MOF) nanocomposites have emerged as a promising strategy in enhancing the eradication of pathogenic bacteria. This study introduces lignin as a novel synergistic agent in Vancomycin-loaded MOF (Lig-Van-MOF), which substantially enhances the antibacterial activity against drug-resistant bacteria.
View Article and Find Full Text PDFAs a sustainable and renewable alternative to petroleum fuels, advanced biofuels shoulder the responsibility of energy saving, emission reduction and environmental protection. Traditional engineering of cell factories for production of advanced biofuels lacks efficient high-throughput screening tools and regulating systems, impeding the improvement of cellular productivity and yield. Transcription factor-based biosensors have been widely applied to monitor and regulate microbial cell factory products due to the advantages of fast detection and in-situ screening.
View Article and Find Full Text PDFBioresour Technol
November 2023
A more effective directed text detection algorithm is proposed for the problem of low accuracy in detecting text with multiple sources, dense distribution, large aspect ratio and arbitrary alignment direction in the industrial intelligence process. The algorithm is based on the YOLOv5 model architecture, inspired by the idea of DenseNet dense connection, a parallel cross-scale feature fusion method is proposed to overcome the problem of blurring the underlying feature semantic information and deep location information caused by the sequential stacking approach and to improve the multiscale feature information extraction capability. Furthermore, a rotational decoupling border detection module, which decouples the rotational bounding box into horizontal bounding box during positive sample matching, is provided, overcoming the angular instability in the process of matching the rotational bounding box with the horizontal anchor to obtain higher-quality regression samples and improve the precision of directed text detection.
View Article and Find Full Text PDFMicrobial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways.
View Article and Find Full Text PDFThe sugar utilization efficiency and the tolerance of microorganism to inhibitors are essential for lipid production from lignocellulosic biomass. In this study, the sugar consumption and inhibitor tolerance characteristics of Trichosporon dermatis 32,903 were investigated. The results showed that the lipid yield on xylose was much lower than that on glucose, while these substrates exhibited comparative efficiency for cell growth.
View Article and Find Full Text PDFLack of cellobiose utilization capability for many microorganisms results in carbon source waste in lignocellulosic biorefinery. In this study, genes for cellobiose transport and hydrolysis were introduced to Saccharomyces cerevisiae synV, a semi-synthetic yeast with an inducible SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution) system incorporated into its chromosome V, endowing cellobiose utilization capability to this strain. Thereafter, two evolved strains with 98.
View Article and Find Full Text PDFYarrowia lipolytica is an efficient oleaginous yeast, whereas its activity is typically reduced by inhibitors present in lignocellulosic hydrolysate. Understanding the response mechanism of Y. lipolytica to hydrolysate inhibitors and developing inhibitor tolerant strains are vital to lignocellulose valorization by this promising species.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2021
Yarrowia lipolytica strain is a promising cell factory for the conversion of lignocellulose to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to lignocellulose-derived inhibitors toxicity tolerance of Y. lipolytica are also required to achieve industrial application.
View Article and Find Full Text PDFJ Agric Food Chem
September 2020
-Butyl acetate is an important food additive commonly produced concentrated sulfuric acid catalysis or immobilized lipase catalysis of butanol and acetic acid. Compared with chemical methods, an enzymatic approach is more environmentally friendly; however, it incurs a higher cost due to lipase production. biosynthesis metabolic engineering offers an alternative to produce -butyl acetate.
View Article and Find Full Text PDFSynthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars.
View Article and Find Full Text PDFBioresour Technol
June 2020
Clostridium diolis can efficiently utilize various inexpensive, renewable resources such as crude glycerol and lignocellulosic biomass hydrolysate to produce bulk chemicals and fuels. However, its study has been impeded by the lack of efficient plasmids electro-transformation techniques. In this study, an efficient electroporation protocol for C.
View Article and Find Full Text PDFDSM 743B can produce butyrate when grown on lignocellulose, but it can hardly synthesize butanol. In a previous study, was successfully engineered to switch the metabolism from butyryl-CoA to butanol by overexpressing an alcohol aldehyde dehydrogenase gene from ATCC 824; however, its full potential in butanol production is still unexplored. In the study, a metabolic engineering approach based on a push-pull strategy was developed to further enhance cellulosic butanol production.
View Article and Find Full Text PDFClostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium.
View Article and Find Full Text PDF