Publications by authors named "Minqin Wang"

Overexpression of the zinc finger gene TaCHP stably enhanced wheat yield in saline-alkaline conditions in a multi-year, three-site field trial, and the genetic variations in its promoter contribute to saline-alkaline tolerance of wheat accessions. TaCHP and its tolerant haplotype have great potential for molecular breeding of stress-tolerant wheat.

View Article and Find Full Text PDF

Fertile hybrids were produced with genetic material transferred from Th. intermedium into a wheat background and supply a source of genetic variation to wheat improvement. Both symmetric and asymmetric somatic hybrids have been obtained from the combination of wheatgrass (Thinopyrum intermedium) and bread wheat (Triticum aestivum).

View Article and Find Full Text PDF

It is found that the plasmon effect of silver nanoparticles (AgNPs) helps to enhance the fluorescence intensity of the quercetin (Qu) and nucleic acids system. Qu exhibited strong fluorescence enhancement when it bound to nucleic acids in the presence of AgNPs. Based on this, a sensitive method for the determination of nucleic acids was developed.

View Article and Find Full Text PDF

Nucleic acids can greatly enhance fluorescence intensity of the kaempferol (Km)-Al(III) system in the presence of silver nanoparticles (AgNPs). Based on this, a novel method for the determination of nucleic acids is proposed. Under studied conditions, there are linear relationships between the extent of fluorescence enhancement and the concentration of nucleic acids in the range of 5.

View Article and Find Full Text PDF

In our early experiments, a variety of Bupleurum scorzonerifolium-like somatic hybrid plants were obtained from protoplast fusion between Arabidopsis thaliana and UV-treated/untreated B. scorzonerifolium. To compare the effects of UV and γ-ray irradiation on the B.

View Article and Find Full Text PDF

A novel method for the determination of nucleic acids by using silver nanoparticle (AgNPs)-eriochrome black T (EBT) as a resonance light scattering (RLS) probe has been developed. Under optimum conditions, there are linear relationships between the quenching extent of RLS intensity and the concentration of nucleic acids in the range of 4.0×10(-9)-4.

View Article and Find Full Text PDF

A novel method is proposed in this paper, that is the silver nanoparticle (nanoAg)-cetyltrimethylammonium bromide (CTMAB) is used as the probe of resonance light scattering (RLS) for the determination of nucleic acids. Under optimum conditions, there are linear relationships between the quenching extent of RLS and the concentration of nucleic acids in the range of 4.0x10(-9)-2.

View Article and Find Full Text PDF

A new quantitative method for micro amounts of nucleic acids in aqueous solution is proposed using Eu3+-benzoylacetone (BA) complex as fluorescent probe in the presence of cetyltrimethyl-ammonium bromide (CTMAB). Under the optimum condition, the ratio of the fluorescence intensities with and without nucleic acids is proportional to the concentration of nucleic acid in the range of 1.0x10(-9) to 5.

View Article and Find Full Text PDF

At pH 9.75, the resonance light scattering (RLS) intensity of OA-Eu3+ system is greatly enhanced by nucleic acid. Based on this phenomenon, a new quantitative method for nucleic acid in aqueous solution has been developed.

View Article and Find Full Text PDF

The vulval development of Caenorhabditis elegans provides an opportunity to investigate genetic networks that control gene expression during organogenesis. During the fourth larval stage (L4), seven vulval cell types are produced, each of which executes a distinct gene expression program. We analyze how the expression of cell-type-specific genes is regulated.

View Article and Find Full Text PDF

Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid.

View Article and Find Full Text PDF

The analysis of cell fate patterning during the vulval development of Caenorhabditis elegans has relied mostly on the direct observation of cell divisions and cell movements (cell lineage analysis). However, reconstruction of the developing vulva from EM serial sections has suggested seven different cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), many of which cannot be distinguished based on such observations. Here we report the vulval expression of seven genes, egl-17, cdh-3, ceh-2, zmp-1, B0034.

View Article and Find Full Text PDF

LIM homeobox family members regulate a variety of cell fate choices during animal development. In C. elegans, mutations in the LIM homeobox gene lin-11 have previously been shown to alter the cell division pattern of a subset of the 2 degrees lineage vulval cells.

View Article and Find Full Text PDF

The analysis of cell fate patterning during the vulval development of Caenorhabditis elegans has relied mostly on the direct observation of cell divisions and cell movements (cell lineage analysis). However, reconstruction of the developing vulva from EM serial sections has suggested seven different cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), many of which cannot be distinguished based on such observations. Here we report the vulval expression of seven genes, egl-17, cdh-3, ceh-2, zmp-1, B0034.

View Article and Find Full Text PDF