Publications by authors named "Minqiao Lu"

Proteostasis and genomic integrity are respectively regulated by the endoplasmic reticulum-associated protein degradation (ERAD) and DNA damage repair signaling pathways, with both pathways essential for carcinogenesis and drug resistance. How these signaling pathways coordinate with each other remains unexplored. We found that ER stress specifically induces the DNA-PKcs-regulated nonhomologous end joining (NHEJ) pathway to amend DNA damage and impede cell death.

View Article and Find Full Text PDF

Ferroptosis is a non-apoptotic form of regulated cell death. Glutathione (GSH) peroxidase 4 (GPX4) and GSH-independent ferroptosis suppressor protein 1 (FSP1) have been identified as major defenses. Here, we uncover a protective mechanism mediated by GSH S-transferase P1 (GSTP1) by monitoring proteinomic dynamics during ferroptosis.

View Article and Find Full Text PDF

Background:  Intra-plaque hemorrhage (IPH) leads to rapid plaque progression and instability through upregulation of matrix metalloproteinases (MMPs) and collagen degradation. Hemoglobin-derived hemin during IPH promotes plaque instability. We investigated whether hemin affects MMP overexpression in macrophages and explored the underlying mechanisms.

View Article and Find Full Text PDF

Acoustic tweezers can control target movement through the momentum interaction between an acoustic wave and an object. This technology has advantages over optical tweezers for in-vivo cell manipulation due to its high tissue penetrability and strong acoustic radiation force. However, normal cells are difficult to acoustically manipulate because of their small size and the similarity between their acoustic impedance and that of the medium.

View Article and Find Full Text PDF

Programmed cell death ligand 1 (PD-L1) is an immune checkpoint protein frequently expressed in human cancers that contributes to immune evasion through its binding to PD-1 on activated T cells. Unveiling the mechanisms underlying PD-L1 expression is essential for understanding the impact of the immunosuppressive microenvironment and is also crucial for the purpose of reboosting antitumor immunity. However, how PD-L1 is regulated, particularly at translational levels, remains largely unknown.

View Article and Find Full Text PDF

Intraplaque hemorrhage (IPH) plays a major role in the aggressive progression of vulnerable plaque, leading to acute cardiovascular events. We previously demonstrated that sonodynamic therapy (SDT) inhibits atherosclerotic plaque progression. In this study, we investigated whether SDT could also be applied to treat more advanced hemorrhagic plaque and addressed the underlying mechanism.

View Article and Find Full Text PDF

Disruption of re-endothelialization and haemodynamic balance remains a critical side effect of drug-eluting stents (DES) for preventing intimal hyperplasia. Previously, we found that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) suppressed macrophage-mediated inflammation in atherosclerotic plaques. However, the effects on intimal hyperplasia and re-endothelialization remain unknown.

View Article and Find Full Text PDF

Intraplaque hemorrhage (IPH) promotes the rapid progression of atherosclerotic plaques, resulting in cardiovascular events in a short time. Hepcidin increases iron retention and exerts proinflammatory effects in plaques. However, hepcidin expression levels in hemorrhagic plaques remain unknown.

View Article and Find Full Text PDF