We previously reported that mice inoculated with splenocytes from M3 muscarinic acetylcholine receptor (M3R) knockout mice immunized with an M3R peptide mixture developed sialadenitis-like Sjögren's syndrome (M3R-induced sialadenitis [MIS]). We also found that intravenous administration of altered peptide ligand (APL) of N-terminal 1 (N1), which is one of the T-cell epitopes of M3R, suppressed MIS. In this study, we aimed to evaluate the suppressive ability and its mechanisms of rice seeds expressing N1-APL7 against MIS.
View Article and Find Full Text PDFMuscarinic receptor stimulation induces depolarizing inward currents and catecholamine secretion in adrenal medullary (AM) cells from various mammals. In guinea-pig AM cells muscarine and oxotremorine at concentrations ≤ 1 μM produce activation of nonselective cation channels with a similar potency and efficacy, whereas muscarine at higher concentrations produces not only nonselective cation channel activation, but also TASK1 channel inhibition. In rat AM cells, the muscarinic M receptor is involved in TASK1 channel inhibition in response to muscarinic agonists, and the efficacy of oxotremorine is half that of muscarine.
View Article and Find Full Text PDFObjective: Autoreactive CD4+ T cells are involved in the pathogenesis of Sjögren's syndrome (SS). The aim of the present study was to clarify the dominant T cell epitopes of M3 muscarinic acetylcholine receptor (M3R) and to establish a new antigen-specific therapy for SS using an experimental mouse model.
Methods: Production of cytokines from M3R-reactive CD4+ T cells, after culture with various M3R peptides, was analyzed by enzyme-linked immunosorbent assay.
Background And Purpose: Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation.
Experimental Approach: To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used.
Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed.
View Article and Find Full Text PDFWe examined ACh-induced [Ca2+]i dynamics in pancreatic acinar cells prepared from mAChR subtype-specific knockout (KO) mice. ACh did not induce any [Ca2+]i increase in the cells isolated from M1/M3 double KO mice. In the cells from M3KO mice, ACh (0.
View Article and Find Full Text PDFThe aim of this study was to develop a novel technique for a minimally invasive ultrasound measurement of postvoid residual urine (PVR) in conscious mice using a miniature ultrasound probe and a transrectal approach. The PVR was determined by the ellipsoid formula in the maximum sectional image of the bladder visualized with a 20-MHz ultrasound probe (2 mm in diameter) inserted into the rectum. The accuracy, including the intra- and interobserver reproducibilities, of the ultrasonic PVR measurements (in 10 5- to 50-week-old mice) was evaluated, which revealed excellent internal consistency.
View Article and Find Full Text PDFPatients with dilated cardiomyopathy (DCM) often have autoantibodies against cardiac antigens including the M(2) muscarinic acetylcholine receptor (M(2)R). To elucidate the role of autoimmunity against M(2)R in disease development, we induced an immune response against M(2)R by adoptive transfer into Rag2(-/-) mice of splenocytes from M(2)R(-/-) mice immunized with a recombinant M(2)R protein. T lymphocytes transiently infiltrated the heart in recipient mice followed by morphological changes in cardiomyocytes.
View Article and Find Full Text PDFIncreased smooth muscle tone in the human prostate contributes to the symptoms associated with benign prostatic hyperplasia. In the mouse prostate gland, cholinergic innervation is responsible for a component of the nerve-mediated contractile response. This study investigates the muscarinic receptor subtype responsible for the cholinergic contractile response in the mouse prostate gland.
View Article and Find Full Text PDFThe aim of this study was to clarify the role of the immune response to muscarinic type 3 receptor (M3R) in the pathogenesis of Sjögren's syndrome (SS). M3R(-/-) mice were immunized with murine M3R peptides and their splenocytes were inoculated into Rag1(-/-) (M3R(-/-)→Rag1(-/-)) mice. M3R(-/-)→Rag1(-/-) mice had high serum levels of anti-M3R antibodies and low saliva volume.
View Article and Find Full Text PDFNihon Rinsho Meneki Gakkai Kaishi
September 2010
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltration of salivary glands, in which CD4(+) T cells are predominant. These infiltrating T cells play a crucial role in the generation of SS. Previous studies showed that autoantibodies and auto-reactive T cells against M3 muscarinic acethylcholine receptor (M3R) were detected in patients with SS.
View Article and Find Full Text PDFAcetylcholine (ACh) plays important roles for higher brain functions, including arousal, attention, and cognition. These effects are mediated largely by muscarinic acetylcholine receptors (mAChRs). However, it remains inconclusive whether the mode of ACh-mAChR signaling is synaptic, so-called "wired," transmission mediated by ACh released into the synaptic cleft, or nonsynaptic, so-called "volume," transmission by ambient ACh.
View Article and Find Full Text PDFTo examine the intrasynaptic arrangement of postsynaptic receptors in relation to the functional role of the synapse, we quantitatively analyzed the two-dimensional distribution of AMPA and NMDA receptors (AMPARs and NMDARs, respectively) using SDS-digested freeze-fracture replica labeling (SDS-FRL) and assessed the implication of distribution differences on the postsynaptic responses by simulation. In the dorsal lateral geniculate nucleus, corticogeniculate (CG) synapses were twice as large as retinogeniculate (RG) synapses but expressed similar numbers of AMPARs. Two-dimensional views of replicas revealed that AMPARs form microclusters in both synapses to a similar extent, resulting in larger AMPAR-lacking areas in the CG synapses.
View Article and Find Full Text PDFACh release into the rodent prefrontal cortex is predictive of successful performance of cue detection tasks, yet the cellular mechanisms underlying cholinergic modulation of cortical function are not fully understood. Prolonged ("tonic") muscarinic ACh receptor (mAChR) activation increases the excitability of cortical pyramidal neurons, whereas transient ("phasic") mAChR activation generates inhibitory and/or excitatory responses, depending on neuron subtype. These cholinergic effects result from activation of "M1-like" mAChRs (M1, M3, and M5 receptors), but the specific receptor subtypes involved are not known.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
October 2009
We explored whether the M(2) muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M(3) muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M(3) selectivity. Then, we used 4-DAMP mustard to inactivate M(3) responses in the guinea pig ileum to attempt to reveal direct, M(2) receptor-mediated contractions.
View Article and Find Full Text PDFSolifenacin is a novel selective antagonist of M(3) muscarinic receptor developed for the treatment of overactive bladder. The current study was undertaken to characterize in vivo muscarinic receptor subtype selectivity of solifenacin in the bladder and submandibular gland by using muscarinic receptor subtype knockout (KO) mice. Muscarinic receptors in the bladder and submandibular gland of wild type, M(2)R KO and M(3)R KO mice under in vitro and after oral administration of solifenacin and oxybutynin were measured by radioligand binding assay using [N-methyl-(3)H]scopolamine ([(3)H]NMS).
View Article and Find Full Text PDFBackground And Purpose: To compare loss in binding to muscarinic receptor (mAChR) subtypes with their known functions, the total density of muscarinic receptors was measured in peripheral tissues from wild type (WT) and mAChR knockout (KO) mice.
Experimental Approach: Binding parameters of [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) were determined in 10 peripheral tissues of WT and M1-M5 receptor KO mice. Competition between [3H]NMS and darifenacin (selective M3 receptor antagonist) was also measured.
Background: The formation of long-term memory (LTM) and the late phase of long-term potentiation (L-LTP) depend on macromolecule synthesis, translation, and transcription in neurons. vesl-1S (VASP/Ena-related gene upregulated during seizure and LTP, also known as homer-1a) is an LTP-induced immediate early gene. The short form of Vesl (Vesl-1S) is an alternatively spliced isoform of the vesl-1 gene, which also encodes the long form of the Vesl protein (Vesl-1L).
View Article and Find Full Text PDFIn prior work, we have shown that it is possible to estimate the product of observed affinity and intrinsic efficacy of an agonist expressed relative to that of a standard agonist simply through the analysis of their respective concentration-response curves. In this report, we show analytically and through mathematical modeling that this product, termed intrinsic relative activity (RA(i)), is equivalent to the ratio of microscopic affinity constants of the agonists for the active state of the receptor. We also compared the RA(i) estimates of selected muscarinic agonists with a relative estimate of the product of observed affinity and intrinsic efficacy determined independently through the method of partial receptor inactivation.
View Article and Find Full Text PDFThe aim of the study was to determine which cholinergic muscarinic receptor subtype is responsible for the endothelium-dependent vasodilatation evoked by acetylcholine (ACh) in mouse arteries. Endothelium-dependent relaxations were evaluated using isometric tension measurement of ring from femoral and aortic artery of M1, M2, and M3 knockout (KO) mice. Rings of femoral and aortic artery from M3 KO mice did not exhibit relaxation at the opposite of rings from M1+M2 KO and wild-type (WT) mice, which were relaxed by ACh.
View Article and Find Full Text PDFImmunological activation of T cells enhances synthesis of acetylcholine (ACh) and transcription of choline acetyltransferase (ChAT), M5 muscarinic ACh receptor (mAChR) and acetylcholinesterase (AChE). Stimulation of mAChRs on T and B cells causes oscillating Ca(2+)-signaling and up-regulation of c-fos expression; moreover, M1 mAChRs play a crucial role in the differentiation of CD8(+) T cells into cytolytic T lymphocytes. Collectively, these findings suggest that immune cell function is regulated by its own cholinergic system.
View Article and Find Full Text PDFWe investigated whether M(2) muscarinic receptor activation opposes isoproterenol-induced relaxation in mouse urinary bladder and whether endogenous acetylcholine acts through a similar M(2) mechanism. When measured in urinary bladder from M(3) receptor knockout mice, the muscarinic agonist oxotremorine-M elicited only very weak contractions. In the presence of alpha,beta-methylene ATP (30 microM) and isoproterenol (1 microM), however, oxotremorine-M elicited a robust contractile response.
View Article and Find Full Text PDF