Silver nanowires in conjunction with sputter-coated Al-doped ZnO (AZO) thin films were used as a composite transparent top electrode for hybrid radial-junction ZnO nanowire/a-Si:H p-i-n thin-film solar cells. Solar cells with the composite nanowire top contacts attained a short-circuit current density (J) of 13.9 mA/cm and a fill factor (FF) of 62% on glass substrates while a J of 13.
View Article and Find Full Text PDFDisordered 3-D hybrid ZnO nanowire/a-Si:H thin-film radial-junction solar cells are directly fabricated onto flexible substrates. A 41% reduction in optical reflectivity resulted in a 15% increase in the current density when the substrate is mechanically bent concave-up toward the incoming light. The light scattering of the nanowire devices was enhanced by decreasing the spacing between the nanowire solar cell by bending the substrate.
View Article and Find Full Text PDFWe experimentally demonstrate a new optical platform by integrating hydrogenated amorphous silicon nanowire arrays with thin films deposited on transparent substrates like glass. A 535 nm thick thin film is anisotropically etched to fabricate vertical nanowire arrays of 100 nm diameter arranged in a square lattice. Adjusting the nanowire length, and consequently the thin film thickness permits the optical properties of this configuration to be tuned for either transmission filter response or enhanced broadband absorption.
View Article and Find Full Text PDFThe optics of core / shell nanowire solar cells was investigated. The optical wave propagation was studied by finite difference time domain simulations using realistic interface morphologies. The interface morphologies were determined by a 3D surface coverage algorithm, which provides a realistic film formation of amorphous silicon films on zinc oxide nanowire arrays.
View Article and Find Full Text PDF