Publications by authors named "Minoche A"

Hepatoblastoma is characterized by driver mutations in , making it an attractive biomarker for a liquid biopsy approach utilizing circulating tumor DNA (ctDNA). This prospective observational study sought to ascertain the feasibility of ctDNA detection in patients with hepatoblastoma and explore its associations with established clinical indicators and biomarkers, including serum Alpha-fetoprotein (AFP). We obtained 38 plasma samples and 17 tumor samples from 20 patients with hepatoblastoma.

View Article and Find Full Text PDF

Background: Breast cancer cell lines (BCCLs) and patient-derived xenografts (PDXs) are the most frequently used models in breast cancer research. Despite their widespread usage, genome sequencing of these models is incomplete, with previous studies only focusing on targeted gene panels, whole exome or shallow whole genome sequencing. Deep whole genome sequencing is the most sensitive and accurate method to detect single nucleotide variants and indels, gene copy number and structural events such as gene fusions.

View Article and Find Full Text PDF
Article Synopsis
  • Whole genome sequencing (WGS) shows better diagnostic results for Mendelian disorders than whole exome sequencing (WES), with a diagnostic yield of 34% in previously WES-negative families compared to 18% for reanalyzed WES.
  • The cost-effectiveness analysis revealed that using WGS alone has a higher incremental cost per additional diagnosis (AU$41,916) compared to WES followed by WGS (AU$36,710) and WGS as a first-line test (AU$29,708).
  • Despite WGS's superior diagnostic ability, the choice between WES and WGS ultimately hinges on specific clinical needs, local resources, and testing availability, as WES with reanalysis offers lower
View Article and Find Full Text PDF

Background And Objectives: Mitochondrial diseases (MDs) are the commonest group of heritable metabolic disorders. Phenotypic diversity can make molecular diagnosis challenging, and causative genetic variants may reside in either mitochondrial or nuclear DNA. A single comprehensive genetic diagnostic test would be highly useful and transform the field.

View Article and Find Full Text PDF

Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS).

View Article and Find Full Text PDF

The inherited retinal dystrophies (IRDs) are a clinically and genetically complex group of disorders primarily affecting the rod and cone photoreceptors or other retinal neuronal layers, with emerging therapies heralding the need for accurate molecular diagnosis. Targeted capture and panel-based strategies examining the partial or full exome deliver molecular diagnoses in many IRD families tested. However, approximately one in three families remain unsolved and unable to obtain personalised recurrence risk or access to new clinical trials or therapy.

View Article and Find Full Text PDF

Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age.

View Article and Find Full Text PDF

Congenital cataracts are one of the major causes of childhood-onset blindness around the world. Genetic diagnosis provides benefits through avoidance of unnecessary tests, surveillance of extraocular features, and genetic family information. In this study, we demonstrate the value of genome sequencing in improving diagnostic yield in congenital cataract patients and families.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial diseases can result from genetic variants in either nuclear or mitochondrial DNA, leading to various symptoms and inheritance patterns.
  • Genome Sequencing (GS) can identify these variants but isn't widely used as a primary diagnostic tool due to cost and data analysis challenges.
  • The article presents three patients whose mitochondrial diseases were diagnosed using GS, highlighting its benefits in detecting specific genetic issues, and suggests that advances in technology and lowering costs will encourage more routine use of GS.
View Article and Find Full Text PDF

Whole genome sequencing (WGS) has the potential to outperform clinical microarrays for the detection of structural variants (SV) including copy number variants (CNVs), but has been challenged by high false positive rates. Here we present ClinSV, a WGS based SV integration, annotation, prioritization, and visualization framework, which identified 99.8% of simulated pathogenic ClinVar CNVs > 10 kb and 11/11 pathogenic variants from matched microarrays.

View Article and Find Full Text PDF
Article Synopsis
  • Many patients with suspected monogenic diseases remain undiagnosed due to challenges in analyzing repetitive regions of the genome, like the ATAD3 locus associated with fatal mitochondrial disorders.
  • Whole exome, genome, and long-read DNA sequencing techniques were utilized on 17 individuals from 16 families, revealing six distinct duplications in the ATAD3 gene linked to severe clinical symptoms, including fatal cardiomyopathy and corneal issues.
  • The identified duplications create abnormal proteins and significantly disrupt mitochondrial function, marking the ATAD3 locus as a leading cause of pediatric mitochondrial diseases, despite frequent detection challenges in standard genomic tests.
View Article and Find Full Text PDF

Objective: To assess the benefits and limitations of whole genome sequencing (WGS) compared to exome sequencing (ES) or multigene panel (MGP) in the molecular diagnosis of developmental and epileptic encephalopathies (DEE).

Methods: We performed WGS of 30 comprehensively phenotyped DEE patient trios that were undiagnosed after first-tier testing, including chromosomal microarray and either research ES (n = 15) or diagnostic MGP (n = 15).

Results: Eight diagnoses were made in the 15 individuals who received prior ES (53%): 3 individuals had complex structural variants; 5 had ES-detectable variants, which now had additional evidence for pathogenicity.

View Article and Find Full Text PDF

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is common, with a prevalence of 1/1000 and predominantly caused by disease-causing variants in PKD1 or PKD2. Clinical diagnosis is usually by age-dependent imaging criteria, which is challenging in patients with atypical clinical features, without family history, or younger age. However, there is increasing need for definitive diagnosis of ADPKD with new treatments available.

View Article and Find Full Text PDF

Interpretation of the significance of maternally inherited X chromosome variants in males with neurocognitive phenotypes continues to present a challenge to clinical geneticists and diagnostic laboratories. Here we report 14 males from 9 families with duplications at the Xq13.2-q13.

View Article and Find Full Text PDF

Purpose: Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion.

Methods: We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how effective genome sequencing is for diagnosing suspected pediatric mitochondrial diseases in a group of 40 Australian patients.
  • Genome sequencing revealed that a definitive or likely molecular diagnosis was achieved in 67% of patients, with higher success rates in those classified as having definite mitochondrial disease.
  • The research identified previously unknown mitochondrial disease genes and highlighted the importance of genome sequencing for understanding a complex and varied condition like mitochondrial disease.
View Article and Find Full Text PDF

Background: The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training.

View Article and Find Full Text PDF
Article Synopsis
  • Brown algae, specifically Ectocarpus subulatus, are studied for their ability to tolerate harsh marine environments and their genomic characteristics.
  • The genome of E. subulatus shows signs of viral sequences and retrotransposons, along with changes in gene families linked to stress response and chlorophyll-binding proteins.
  • A significant portion of genes that differ between E. subulatus and another species, E. Ec32, are still of unknown function, suggesting unique mechanisms of stress tolerance that warrant further research.
View Article and Find Full Text PDF
Article Synopsis
  • Dystonia, a complex disorder with various symptoms, poses challenges in identifying genetic causes; this study used whole genome sequencing (WGS) on 111 patients to explore these genetic links.
  • Researchers found genetic diagnoses in 11.7% of participants, with a higher likelihood among individuals with earlier onset and more varied symptoms, identifying specific pathogenic variants in several genes.
  • The study highlights WGS as a valuable tool for diagnosing dystonia, especially because it can detect copy number variants (CNVs), which were present in 23% of those with a genetic diagnosis.
View Article and Find Full Text PDF

We present draft genome assemblies of Beta patula, a critically endangered wild beet endemic to the Madeira archipelago, and of the closely related Beta vulgaris ssp. maritima (sea beet). Evidence-based reference gene sets for B.

View Article and Find Full Text PDF

Inherited disorders of spasticity or ataxia exist on a spectrum with overlapping causative genes and phenotypes. We investigated the use of whole-genome sequencing (WGS) to detect a genetic cause when considering this spectrum of disorders as a single group. We recruited 18 Korean individuals with spastic paraplegia with or without cerebellar ataxia in whom common causes of hereditary cerebellar ataxia and hereditary spastic paraplegia had been excluded.

View Article and Find Full Text PDF

Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies.

View Article and Find Full Text PDF