Publications by authors named "Minnikova Tatiana"

The work objective was to assess the ecological state of soils by changing the residual oil content and restoring catalase activity after remediation. The soils were selected in various ecosystems: a steppe of the Rostov Region (Haplic Chernozem), beech-hornbeam forests in the Republic of Adygea (Haplic Cambisols), and semi-desert of the Caspian province of the Republic of Kalmykia (Eutric Cambisols). Soil samples were polluted with oil at a concentration of 5% of the soil mass.

View Article and Find Full Text PDF

Soil health is the basis of ecological and food security for humanity. Among the informative indicators of soil health are microbiological indicators based on the intensity of the carbon dioxide release from the soil. The reaction of the microbial community of Haplic Chernozem Loamic, Haplic Arenosols Eutric, and Haplic Cambisols Eutric to contamination with oxides and nitrates of Ag, Bi, Tl, and Te at doses of 0.

View Article and Find Full Text PDF

The content of various chemical elements such as metals, metalloids, and nonmetals in the environment is associated with natural and anthropogenic sources. It is necessary to normalize the content of metals, metalloids, and nonmetals as potentially toxic elements (PTE) in the Haplic Chernozem. The soils of the Southern Russia are of high quality and fertility.

View Article and Find Full Text PDF

An increase in the penetration of metal-based nanoparticles (NPs) into the environment requires an assessment of their ecotoxicity as they impair the critical activity of plants, animals, bacteria, and enzymes. Therefore, the study aimed to observe the effects of metal-based NPs, including copper (Cu), nickel (Ni), and zinc (Zn), on the Cambisols, which cover a significant part of the earth's soil and play an important role in the biosphere. Metal-based NPs were introduced into the soil at concentrations of 100, 1000, and 10,000 mg/kg.

View Article and Find Full Text PDF

In recent years, silver nanoparticles (AgNPs) are increasingly used in various industries due to their antibacterial properties, which lead to an increase in pollution of the environment and soil ecosystems. However, the ecological effects of soil pollution by AgNPs were poorly studied than that with AgNPs of other metal-based NPs. The aim of this study is to assess the influence of AgNPs on the biological properties of Haplic Chernozem.

View Article and Find Full Text PDF