Rib fractures can cause injury to some organs. We herein report a case of hemorrhagic shock due to intercostal artery injury that occurred during initial trauma care (ITC) treated by resuscitative thoracotomy (RT) and transcatheter arterial embolization (TAE) with multiple displaced rib fractures (RFs) and traumatic head injury (THI). A man in his 50s who was injured in a traffic accident was transferred to our institution by helicopter for emergency medical treatment.
View Article and Find Full Text PDFBiodegradable polymeric materials are a key area of investigation in drug delivery and disease treatment. This is due to their proven clinical potential for payload protection, responsivity, and surface modification imparted by the versatile array of polymers available for their formulation. Here, we employ a novel biodegradable azide containing polymer in the formulation of polymeric nanoparticles and show that these particles can then be functionalized, with biorthogonal click reactions, to alter their surface appearance and their ability to interact with biological systems.
View Article and Find Full Text PDFIn the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity.
View Article and Find Full Text PDFMaterials that degrade or dissociate in response to low power light promise to enable on-demand, precisely localized delivery of drugs or bioactive molecules in living systems. Such applications remain elusive because few materials respond to wavelengths that appreciably penetrate tissues. The photocage bromohydroxycoumarin (Bhc) is efficiently cleaved upon low-power ultraviolet (UV) and near-infrared (NIR) irradiation through one- or two-photon excitation, respectively.
View Article and Find Full Text PDFClinically approved small-molecule magnetic resonance imaging (MRI) contrast agents are all rapidly cleared from the body and offer weak signal enhancement. To avoid repeated administration of contrast agent and improve signal-to-noise ratios, agents with stronger signal enhancement and better retention in tumors are needed. Therefore, we focused on hydrogels because of their excellent water accessibility and biodegradability.
View Article and Find Full Text PDFMetals are essential in medicine for both therapy and diagnosis. We recently created the first metal-chelating nanogel imaging agent, which employed versatile, reproducible chemistry that maximizes chelation stability. Here we demonstrate that our metal chelating crosslinked nanogel technology is a powerful platform by incorporating (64)Cu to obtain PET radiotracers.
View Article and Find Full Text PDFWe present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd.
View Article and Find Full Text PDFAn activation mechanism based on encapsulated ultrasmall gadolinium oxide nanoparticles (Gd oxide NPs) in bioresponsive polymer capsules capable of triggered release in response to chemical markers of disease (i.e., acidic pH, H2O2) is presented.
View Article and Find Full Text PDFA new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles.
View Article and Find Full Text PDFMacromolecular contrast agents have the potential to assist magnetic resonance imaging (MRI) due to their high relaxivity, but are not clinically useful because of toxicity due to poor clearance. We have prepared a biodegradable ketal-based polymer contrast agent which is designed to degrade rapidly at physiological pH by hydrolysis, facilitating renal clearance. In vitro, the agent degraded more rapidly at lower pH, with complete fragmentation after 24 h at pH 7.
View Article and Find Full Text PDF