A new series of high affinity ligands and antagonists for the α1D-adrenergic receptor (AR) has been discovered. New molecules present a [1]benzothieno[3,2-d]pyrimidin-2,4(1H,3H)-dione or a [1]benzothieno[3,2-d]pyrimidin-4(3H)-one scaffold and bear a 2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl moiety in the 3-position and various amide substituents in the 8-position. In binding assays at the three human cloned α1A-, α1B-, and α1D-AR subtypes, they showed high affinity values, particularly for the α1D-AR subtype.
View Article and Find Full Text PDFA number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α(1)-adrenergic receptor (α(1)-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α(1A)-, α(1B)-, and α(1D)-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties.
View Article and Find Full Text PDFMarine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms.
View Article and Find Full Text PDFNatural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far.
View Article and Find Full Text PDFStudies on olfactory receptor (OR) pharmacology have been hindered by the poor plasma membrane localization of most ORs in heterologous cells. We previously reported that association with the beta(2)-adrenergic receptor (beta(2)-AR) facilitates functional expression of the OR M71 at the plasma membrane of HEK-293 cells. In the present study, we examined the specificity of M71 interactions with other G protein-coupled receptors (GPCRs).
View Article and Find Full Text PDFA number of new pyrimido[5,4-b]indole and [1]benzothieno[3,2-d]pyrimidine derivatives were synthesized and evaluated for their binding and functional properties at alpha(1)-adrenergic receptor (alpha(1)-AR) subtypes. They behaved as potent alpha(1)-AR antagonists. In binding experiments, some of them (RC24 and RC23) showed very high affinity for the alpha(1D)-AR subtype.
View Article and Find Full Text PDFBiochem Pharmacol
April 2007
G protein coupled receptors (GPCRs) are one of the largest human gene families, and are targets for many important therapeutic drugs. Over the last few years, there has been a major paradigm shift in our understanding of how these receptors function. Formerly, GPCRs were thought to exist as monomers that, upon agonist occupation, activated a heterotrimeric G protein to alter the concentrations of specific second messengers.
View Article and Find Full Text PDFWith the aim to develop new ligands able to discriminate among the three subtypes of alpha1-adrenergic receptors (alpha1A-AR, alpha1B-AR, and alpha1D-AR), a series of new 1,2,3,9-tetrahydro-4H-carbazol-4-ones bearing a 3-[[[2-(4-hydroxyphenyl)ethyl]amino]methyl] or a 3-[[4-(2-substitutedphenyl)piperazin-1-yl]methyl] side chain were synthesized. The general structure of the new compounds is reminiscent of HEAT and RN5, two potent alpha1-AR antagonists which show high affinities for all three alpha1-AR subtypes. Some derivatives in which one ring of the tetrahydrocarbazolone system was opened were also prepared.
View Article and Find Full Text PDFTo find novel cytoplasmic binding partners of the alpha1D-adrenergic receptor (AR), a yeast two-hybrid screen using the alpha1D-AR C terminus as bait was performed on a human brain cDNA library. Alpha-syntrophin, a protein containing one PDZ domain and two pleckstrin homology domains, was isolated in this screen as an alpha1D-AR-interacting protein. Alpha-syntrophin specifically recognized the C terminus of alpha1D- but not alpha1A- or alpha1B-ARs.
View Article and Find Full Text PDFAlpha1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned alpha1-AR subtypes (alpha1A, alpha1B, and alpha1D) are G protein-coupled receptors that signal through the Gq/11 signaling pathway, each showing distinct pharmacological properties and tissue distributions. However, due to the lack of highly subtype-selective drugs, the functional roles of individual subtypes are still not clear.
View Article and Find Full Text PDFHeterologous expression of alpha(1D)-adrenergic receptors (alpha(1D)-ARs) in most cell types results in intracellular retention and little or no functionality. We showed previously that heterodimerization with alpha(1B)-ARs promotes surface localization of alpha(1D)-ARs. Here, we report that the alpha(1B)-/alpha(1D)-AR interaction has significant effects on the pharmacology and signaling of the receptors, in addition to the effects on trafficking described previously.
View Article and Find Full Text PDFRegulators of G-protein signaling (RGS) proteins act directly on Galpha subunits to increase the rate of GTP hydrolysis and to terminate signaling. However, the mechanisms involved in determining their specificities of action in cells remain unclear. Recent evidence has raised the possibility that RGS proteins may interact directly with G-protein-coupled receptors to modulate their activity.
View Article and Find Full Text PDFThe ability of the conotoxin rho-TIA, a 19-amino acid peptide isolated from the marine snail Conus tulipa, to antagonize contractions induced by noradrenaline through activation of alpha1A-adrenoceptors in rat vas deferens, alpha1B-adrenoceptors in rat spleen and alpha1D-adrenoceptors in rat aorta, and to inhibit the binding of [125I]HEAT (2-[[beta-(4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone) to membranes of human embryonic kidney (HEK) 293 cells expressing each of the recombinant rat alpha1-adrenoceptors was investigated. rho-TIA (100 nM to 1 microM) antagonized the contractions of vas deferens and aorta in response to noradrenaline without affecting maximal effects and with similar potencies (pA2 approximately 7.2, n=4).
View Article and Find Full Text PDFResearch on olfaction has been fraught with considerable frustration because none of the hundreds of olfactory receptors make it to the cell surface on their own when expressed in heterologous systems. Recent work indicates that the heterodimerization of olfactory receptors with beta2-adrenergic receptors results in surface expression of these G protein-coupled receptors. Similar conclusions--that heterodimerization is essential for surface expression of olfactory receptors--have been drawn from research in Drosophila utilizing completely different knockout and functional approaches.
View Article and Find Full Text PDFThe alpha1D-adrenergic receptor (alpha1D-AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote alpha1D-AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of alpha1D-AR at the cell surface: alpha1B-AR and beta2-AR.
View Article and Find Full Text PDFNorepinephrine and epinephrine are involved in the control of several important functions of the central nervous system (CNS), including sleep, arousal, mood, appetite, and autonomic outflow. Catecholamines control these functions through activation of a family of adrenergic receptors (ARs). The ARs are divided into three subfamilies (alpha1, alpha2, and beta) based on their pharmacologic properties, signaling mechanisms, and structure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2004
Olfactory receptors (ORs) comprise more than half of the large class I G protein-coupled receptor (GPCR) superfamily. Although cloned over a decade ago, little is known about their properties because wild-type ORs do not efficiently reach the cell surface following heterologous expression. Receptor-receptor interactions strongly influence surface trafficking of other GPCRs, and we examined whether a similar mechanism might be involved in OR surface expression.
View Article and Find Full Text PDFThe 19-amino acid conopeptide (rho-TIA) was shown previously to antagonize noncompetitively alpha(1B)-adrenergic receptors (ARs). Because this is the first peptide ligand for these receptors, we compared its interactions with the three recombinant human alpha(1)-AR subtypes (alpha(1A), alpha(1B), and alpha(1D)). Radioligand binding assays showed that rho-TIA was 10-fold selective for human alpha(1B)-over alpha(1A)- and alpha(1D)-ARs.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are encoded by a vast gene superfamily, reflecting the large number of ligands that must be specifically recognized at any given cell surface. The discovery that the variety of GPCRs is further expanded through the generation of splice variants was therefore somewhat surprising. Studies of the functional consequences of alternative splicing have focused on ligand binding, signaling, constitutive activity, and downregulation.
View Article and Find Full Text PDFalpha(1)-Adrenergic receptors (ARs) belong to the large Class I G protein-coupled receptor superfamily and comprise three subtypes (alpha(1A), alpha(1B), and alpha(1D)). Previous work with heterologously expressed C-terminal green fluorescent protein (GFP)-tagged alpha(1)-ARs showed that alpha(1A)- and alpha(1B)-ARs localize to the plasma membrane, whereas alpha(1D)-ARs accumulate intracellularly. We recently showed that alpha(1D)- and alpha(1B)-ARs form heterodimers, whereas alpha(1D)- and alpha(1A)-ARs do not.
View Article and Find Full Text PDFWe previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and sucrose density gradient fractionation suggested that full-length alpha(1D)-ARs were found primarily in intracellular compartments, whereas Delta(1-79)alpha(1D)-ARs were translocated to the plasma membrane.
View Article and Find Full Text PDFThe potential role of dimerization in controlling the expression and pharmacological properties of alpha1-adrenoceptor subtypes was examined using coimmunoprecipitation of epitope-tagged receptors. Human alpha1-adrenoceptor subtypes (alpha1A, alpha1B, alpha1D) were tagged at their amino-termini with Flag or hemagglutinin epitopes and transfected into human embryonic kidney 293 cells. Homodimerization of all three subtypes was observed by coimmunoprecipitation of receptors with different tags and was not altered by norepinephrine treatment.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
July 2004
The multi-functional protein gC1qR has been reported to interact with an arginine-rich motif in the C-tail of hamster alpha1B-adrenoceptors (ARs), controlling their expression and subcellular localization. Since a similar motif is present in alpha1D-, but not alpha1A-ARs, we studied the specificity of this interaction. Human alpha1-ARs, tagged at their amino termini with Flag epitopes, were coexpressed in HEK293 cells with gC1qR containing a hemaglutinin (HA) tag at its carboxy terminus.
View Article and Find Full Text PDFAlpha(1)-adrenergic receptors are one of the three subfamilies of G protein coupled receptors activated by epinephrine and norepinephrine to control important functions in many target organs. Three human subtypes (alpha(1A), alpha(1B), alpha(1D)) are derived from separate genes and are highly homologous in their transmembrane domains but not in their amino or carboxyl termini. Recent advances in our understanding of these "non-identical triplets" include development of knockout mice lacking single or multiple subtypes, new insights into subcellular localization and trafficking, identification of allosteric modulators, and increasing evidence for an important role in brain function.
View Article and Find Full Text PDFA new series of compounds were designed as structural analogues of the alpha(1)-AR ligand RN5 (4), characterized by a tricyclic 5H-pyrimido[5,4-b]indole-(1H,3H)2,4-dione system connected through an alkyl chain to a phenylpiperazine (PP) moiety. These compounds were synthesized and tested in binding assays on human alpha(1A)-AR, alpha(1B)-AR, and alpha(1D)-AR subtypes expressed in HEK293 cells. Several structural modifications were performed on the PP moiety, the tricyclic system, and the connecting alkyl chain.
View Article and Find Full Text PDF