2,5-diketopiperazines are the simplest forms of cyclic dipeptides (CDPs) and have diverse frameworks with chiral side chains that are useful for drug development. Previous research has investigated the antimicrobial properties of proline-linked CDPs and their combinations in the culture filtrate (CF) of LBP-K10 using anion exchange chromatography (AEC). However, the quantity of CDPs showcasing notable anti-influenza virus activity derived from AECs was generally lower than those originating from CF.
View Article and Find Full Text PDFThe E/S (exposed/susceptible) ratio is analyzed in the SEIR model. The ratio plays a key role in understanding epidemic dynamics during the 2014-2016 Ebola outbreak in Sierra Leone and Guinea. The maximum value of the ratio occurs immediately before or after the time-dependent reproduction number (R) equals 1, depending on the initial susceptible population (S(0)).
View Article and Find Full Text PDFJ Microbiol Biotechnol
February 2024
Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl DL-3-phenyllactic acid were previously identified in the culture filtrates of LBP-K10, an isolate from kimchi. In this study, we used Japanese quail () eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails.
View Article and Find Full Text PDFBackgroud/objectives: larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear.
View Article and Find Full Text PDFThere have been relatively few studies which support a link between Ganoderma boninense, a phytopathogenic fungus that is particularly cytotoxic and pathogenic to plant tissues and roots, and antimicrobial compounds. We previously observed that liquid-liquid extraction (LLE) using chloroformmethanol-water at a ratio (1:1:1) was superior at detecting antibacterial activities and significant quantities of antibacterial compounds. Herein, we demonstrate that antibacterial secondary metabolites are produced from G.
View Article and Find Full Text PDFGlutathione reductase (Glr1) activity controls cellular glutathione and reactive oxygen species (ROS). We previously demonstrated two predominant methylglyoxal scavengers-NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase 1 (Adh1)-in glutathione-depleted γ-glutamyl cysteinyl synthetase-disrupted Candida albicans. However, experimental evidence for Candida pathophysiology lacking the enzyme activities of Mgd1 and Adh1 on glutathione-dependent redox regulation remains unclear.
View Article and Find Full Text PDFAntiplasmodial nortriterpenes with 3,4-seco-27-norlanostane skeletons, almost entirely obtained from fruiting bodies, represent the main evidential source for bioactive secondary metabolites derived from a relatively unexplored phytopathogenic fungus, Ganoderma boninense. Currently lacking is convincing evidence for antimicrobial secondary metabolites in this pathogen, excluding that obtained from commonly observed phytochemicals in the plants. Herein, we aimed to demonstrate an efficient analytical approach for the production of antibacterial secondary metabolites using the mycelial extract of G.
View Article and Find Full Text PDFγ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in . In glutathione-depleted , we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking or exhibit a poor redox state.
View Article and Find Full Text PDFProtein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity.
View Article and Find Full Text PDFInflammation is provoked by host immune reactions to pathogenic or tissue injury and is arbitrated by cytokines. Among the pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) are main mediators of inflammation. The production of these pro-inflammatory cytokines is mainly triggered in macrophages by harmful stimuli including microbial pathogens, irritants, and toxic cellular components, and plays key roles in the palpation of the inflammatory response.
View Article and Find Full Text PDFYlaD, a membrane-anchored anti-sigma (σ) factor of , contains a HXCXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P promoter is autoregulated solely by YlaC.
View Article and Find Full Text PDFD-erythroascorbate peroxidase (EAPX1) deficiency causes glutathione deprivation, leading to the accumulation of methylglyoxal and reactive oxygen species (ROS), and especially, induction of cytochrome c peroxidase (Ccp1) in Candida albicans. Nevertheless, reciprocal effects between changes in Ccp1 activity and the antioxidative D-erythroascorbic acid- and glutathione-dependent redox status, which reflects methylglyoxal biosynthesis altering pathophysiology are unclear in eukaryotes. To elucidate the effect of CCP1 expression on EAPX1 and glutathione reductase (Glr1) activity-mediated D-erythroascorbic acid biosynthesis and redox homeostasis, the CCP1 gene was disrupted and overexpressed.
View Article and Find Full Text PDFBackground: High methylglyoxal content disrupts cell physiology, but mammals have scavengers to prevent glycolytic and mitochondrial dysfunctions. In yeast, methylglyoxal accumulation triggers methylglyoxal-oxidizing alcohol dehydrogenase (Adh1) activity. While methylglyoxal reductases and glyoxalases have been well studied in prokaryotes and eukaryotes, experimental evidence for methylglyoxal dehydrogenase (Mgd) and other catalytic activities of this enzyme affecting glycolysis and the tricarboxylic acid cycle is lacking.
View Article and Find Full Text PDFMethylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed.
View Article and Find Full Text PDFGlutathione (GSH)-deprived Dictyostelium discoideum accumulates methylglyoxal (MG) and reactive oxygen species (ROS) during vegetative growth. However, the reciprocal effects of the production and regulation of these metabolites on differentiation and cell motility are unclear. Based on the inhibitory effects of γ-glutamylcysteine synthetase (gcsA) disruption and GSH reductase (gsr) overexpression on aggregation and culmination, respectively, we overexpressed GSH-related genes encoding superoxide dismutase (Sod2), catalase (CatA), and Gcs, in D.
View Article and Find Full Text PDFand play a prominent role as functional starters and predominant isolates in the production of various types of antimicrobial compound-containing fermented foods, especially including kimchi. In the case of the bioactive cyclic dipeptides, their racemic diastereomers inhibitory to bacteria and fungi have been suggested to come solely from spp. of these strains.
View Article and Find Full Text PDFPolyamines protect protein glycation in cells against the advanced glycation end product precursor methylglyoxal, which is inevitably produced during glycolysis, and the enzymes that detoxify this α-ketoaldehyde have been widely studied. Nonetheless, nonenzymatic methylglyoxal-scavenging molecules have not been sufficiently studied either in vitro or in vivo. Here, we hypothesized reciprocal regulation between polyamines and methylglyoxal modeled in Dictyostelium grown in a high-glucose medium.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
April 2017
Background: Glutathione reductase maintains the glutathione level in a reduced state. As previously demonstrated, glutathione is required for cell growth/division and its biosynthesizing-enzyme deficiency causes methylglyoxal accumulation. However, experimental evidences for reciprocal relationships between Cph1-/Efg1-mediated signaling pathway regulation and methylglyoxal production exerted by glutathione reductase on yeast morphology remain unclear.
View Article and Find Full Text PDFPolyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose.
View Article and Find Full Text PDFCandida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence.
View Article and Find Full Text PDFWe purified a fraction that showed NAD(+)-linked methylglyoxal dehydrogenase activity, directly catalyzing methylglyoxal oxidation to pyruvate, which was significantly increased in glutathione-depleted Candida albicans. It also showed NADH-linked methylglyoxal-reducing activity. The fraction was identified as a NAD(+)-linked alcohol dehydrogenase (ADH1) through mass spectrometric analyses.
View Article and Find Full Text PDFLactobacillus plantarum LBP-K10 was identified to be the most potent antifungal strain from Korean traditional fermented vegetables. The culture filtrate of this strain showed remarkable antifungal activity against Ganoderma boninense. Five fractions from the culture filtrate were observed to have an inhibitory effect against G.
View Article and Find Full Text PDFWe isolated Lactobacillus plantarum LBP-K10 from the traditional Korean fermented food kimchi. When organic acids were removed, the culture filtrate of this isolate showed high antiviral activity (measured using a plaque-forming assay) against the influenza A (H3N2) virus. Two fractions that were active against influenza A virus were purified from the culture filtrate using a C18 column with high-performance liquid chromatography.
View Article and Find Full Text PDF