Publications by authors named "Minkook Kim"

Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation surface treatment was developed to improve the adhesive bonding strength for polyamide-based carbon fiber-reinforced polymer.

View Article and Find Full Text PDF

In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using aqueous solutions of graphene, single-walled carbon nanotubes, and sodium dodecyl sulfate surfactant. The hybrid films showed excellent electrode properties, such as an optical transmittance of ≥90%, a sheet resistance of ~3.

View Article and Find Full Text PDF

Individual carbon nanotubes (CNT) and graphene have unique mechanical and electrical properties; however, the properties of their macroscopic assemblies have not met expectations because of limited physical dimensions, the limited degree of dispersion of the components, and various structural defects. Here, a state-of-the-art assembly for a novel type of hybrid fiber possessing the properties required for a wide variety of multifunctional applications is presented. A simple and effective multidimensional nanostructure of CNT and graphene oxide (GO) assembled by solution processing improves the interfacial utilization of the components.

View Article and Find Full Text PDF

This study aimed to determine the factors affecting the body weight (BW) of Hanwoo steers by collecting a large number of BW measurements using an automated weighing system (AWS). The BW of 12 Hanwoo steers was measured automatically using an AWS for seven days each month over three months. On the fourth day of the BW measurement each month, an additional BW measurement was conducted manually.

View Article and Find Full Text PDF

Zinc oxide (ZnO), an inorganic compound that appears as a white powder, is used frequently as an ingredient in sunscreens. The aim of this review was to examine the toxicology and risk assessment of ZnO based upon available published data. Recent studies on acute, sub-acute, and chronic toxicities of ZnO indicated that this compound is virtually non-toxic in animal models.

View Article and Find Full Text PDF

Dietary hydroxycinnamates are considered as attractive materials for radioprotection. This study explores whether hydroxycinnamates protect against γ-radiation-induced cellular damages and hematopoietic stem cell senescence. C57BL/6 mice were orally administered with each of caffeic acid, p-coumaric acid, and ferulic acid (20mg/kg body weight) once per three days for five times before exposure to total body radiation (5 Gy).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Water extract of Raphanus sativus L. (RSL) seeds was traditionally used to treat digestive inflammatory complaints in Korean culture. RSL seeds exerted antioxidant, anti-inflammatory, and anti-septic functions, suggesting their pharmacological potential for the treatment of inflammatory pathologies associated with oxidative stress such as inflammatory bowel disease.

View Article and Find Full Text PDF

Background: Concurrent endocrine therapy with chemotherapy had a concern of potential antagonism. However, gonadotropin-releasing hormone (GnRH) agonist has been used concurrently with chemotherapy to prevent premature ovarian failure for young breast cancer patients. The aim of this study was to determine the impact of concurrent use of GnRH agonists on relapse-free and overall survival, and to establish the oncologic safety of ovarian protection with GnRH agonists.

View Article and Find Full Text PDF

For graphene to be used in semiconductor applications, a 'wide energy gap' of at least 0.5 eV at the Dirac energy must be opened without the introduction of atomic defects. However, such a wide energy gap has not been realized in graphene, except in the cases of narrow, chemically terminated graphene nanostructures with inevitable edge defects.

View Article and Find Full Text PDF

Cadillac Mountain--the highest peak along the eastern seaboard of the United States--is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies--based on placing physical barriers and educational messages for visitors--have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail.

View Article and Find Full Text PDF

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependences. With varying the average size (d(a)) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at d(a) = ~17 nm.

View Article and Find Full Text PDF

Glioma stem cells (GSCs) are presumably major culprits for brain tumor initiation, progression, and recurrence after conventional therapies. Thus, selective targeting and eradication of GSCs may provide a promising and effective therapeutic approach. Here, we isolated a GSC-targeting (GSCT) peptide that demonstrated selective binding affinity for many undifferentiated GSCs using in vitro phage display technology.

View Article and Find Full Text PDF

The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions.

View Article and Find Full Text PDF

This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales.

View Article and Find Full Text PDF

Background: Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information.

View Article and Find Full Text PDF

We first found experimentally a cycloaddition reaction of a molecule on a symmetry Si pair, 1,3-butadiene on the Si adatom pair of Si(111)7x7, while up to now only asymmetric Si pairs were reported to be involved in cycloaddition reactions on Si surfaces. As the symmetry of a Si pair is expected to influence significantly a cycloaddition product and a reaction pathway, the [4+2]-like cycloaddition product of 1,3-butadiene on the Si adatom pair is suggested to form through a concerted reaction pathway in comparison to a stepwise reaction pathway, which is favorable in the formation of the [4+2]-like cycloaddition product on the asymmetric Si pair (the Si adatom-restatom pair).

View Article and Find Full Text PDF