Dietary exposure to aflatoxin B1 (AFB1) is a risk factor for the development of hepatocellular carcinomas. Following metabolic activation, AFB1 reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single-base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer database.
View Article and Find Full Text PDFPixantrone and mitoxantrone are structurally related anticancer drugs which have been shown to generate covalent conjugates at apurinic/apyrimidinic (AP) sites in DNA. Mitoxantrone binding to AP sites induces DNA strand cleavage and inhibits the endonuclease activity of human AP endonuclease 1 (APE1). Here, pixantrone was demonstrated to have similar properties, but relative to mitoxantrone, it was significantly less potent in both DNA incision and APE1 inhibition.
View Article and Find Full Text PDFThe base excision repair (BER) pathway is a precise and versatile mechanism of DNA repair that is initiated by DNA glycosylases. Endonuclease VIII-like 1 (NEIL1) is a bifunctional glycosylase/abasic site (AP) lyase that excises a damaged base and subsequently cleaves the phosphodiester backbone. NEIL1 is able to recognize and hydrolyze a broad range of oxidatively-induced base lesions and substituted ring-fragmented guanines, including aflatoxin-induced 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B (AFB-FapyGua).
View Article and Find Full Text PDFIncreased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B (AFB) to a reactive epoxide generates highly mutagenic AFB-Fapy-dG adducts. Previously, we demonstrated that repair of AFB-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male mice were significantly more susceptible to AFB-induced HCC relative to wild-type mice.
View Article and Find Full Text PDFMitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione) is a clinically-relevant synthetic anthracenedione that functions as a topoisomerase II poison by trapping DNA double-strand break intermediates. Mitoxantrone binds to DNA via both stacking interactions with DNA bases and hydrogen bonding with the sugar-phosphate backbone. It has been shown that mitoxantrone inhibits apurinic/apyrimidinic (AP) endonuclease 1 (APE1)-catalyzed incision of DNA containing a tetrahydrofuran (THF) moiety and more recently, that mitoxantrone forms Schiff base conjugates at AP sites in DNA.
View Article and Find Full Text PDFNei-like glycosylase 1 (NEIL1) is a DNA repair enzyme that initiates the base excision repair (BER) pathway to cleanse the human genome of damage. The substrate specificity of NEIL1 includes several common base modifications formed under oxidative stress conditions, as well as the imidazole ring open adducts that are induced by alkylating agents following initial modification at N7 guanine. An example of the latter is the persistent and mutagenic 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B (AFB-FapyGua) adduct, resulting from the alkylating agent aflatoxin B (AFB) exo-8-9-epoxide.
View Article and Find Full Text PDFDietary exposure to aflatoxin B (AFB) is a recognized risk factor for developing hepatocellular carcinoma. The mutational signature of AFB is characterized by high-frequency base substitutions, predominantly G>T transversions, in a limited subset of trinucleotide sequences. The 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B (AFB-FapyGua) has been implicated as the primary DNA lesion responsible for AFB-induced mutations.
View Article and Find Full Text PDFThe N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and β deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Human clinical trials suggest that inhibition of enzymes in the DNA base excision repair (BER) pathway, such as PARP1 and APE1, can be useful in anticancer strategies when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. There is also evidence suggesting that inhibition of the BER enzyme 8-oxoguanine DNA glycosylase-1 (OGG1), which initiates repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-dG), could be useful in treating certain cancers. Specifically, in acute myeloid leukemia (AML), both the RUNX1-RUNX1T1 fusion and the CBFB-MYH11 subtypes have lower levels of expression, which correlate with increased therapeutic-induced cell cytotoxicity and good prognosis for improved, relapse-free survival compared with other AML patients.
View Article and Find Full Text PDFDietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B (AFB) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B (AFB-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions.
View Article and Find Full Text PDFPre-mRNA encoding human NEIL1 undergoes editing by adenosine deaminase ADAR1 that converts a single adenosine to inosine, and this conversion results in an amino acid change of lysine 242 to arginine. Previous investigations of the catalytic efficiencies of the two forms of the enzyme revealed differential release of thymine glycol (ThyGly) from synthetic oligodeoxynucleotides, with the unedited form, NEIL1 K242 being ≈30-fold more efficient than the edited NEIL1 K242R. In contrast, when these enzymes were reacted with oligodeoxynucleotides containing guanidinohydantoin or spiroiminohydantoin, the edited K242R form was ≈3-fold more efficient than the unedited NEIL1.
View Article and Find Full Text PDFA variety of agents cause DNA base alkylation damage, including the known hepatocarcinogen aflatoxin B (AFB) and chemotherapeutic drugs derived from nitrogen mustard (NM). The N7 site of guanine is the primary site of alkylation, with some N7-deoxyguanosine adducts undergoing imidazole ring-opening to stable mutagenic N-alkyl formamidopyrimidine (Fapy-dG) adducts. These adducts exist as a mixture of canonical β- and unnatural α-anomeric forms.
View Article and Find Full Text PDFNitrogen mustards (NMs) are DNA-alkylating compounds that represent the earliest anticancer drugs. However, clinical use of NMs is limited because of their own mutagenic properties. The mechanisms of NM-induced mutagenesis remain unclear.
View Article and Find Full Text PDFAddition of hydroxyl radicals to the C8 position of 2'-deoxyguanosine generates an 8-hydroxyguanyl radical that can be converted into either 8-oxo-7,8-dihydro-2'-deoxyguanosine or N-(2-deoxy-d-pentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine) (Fapy-dG). The Fapy-dG adduct can adopt different conformations and in particular, can exist in an unnatural α anomeric configuration in addition to canonical β configuration. Previous studies reported that in 5'-TGN-3' sequences, Fapy-dG predominantly induced G → T transversions in both mammalian cells and Escherichia coli, suggesting that mutations could be formed either via insertion of a dA opposite the 5' dT due to primer/template misalignment or as result of direct miscoding.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2017
Global distribution of hepatocellular carcinomas (HCCs) is dominated by its incidence in developing countries, accounting for >700,000 estimated deaths per year, with dietary exposures to aflatoxin (AFB) and subsequent DNA adduct formation being a significant driver. Genetic variants that increase individual susceptibility to AFB-induced HCCs are poorly understood. Herein, it is shown that the DNA base excision repair (BER) enzyme, DNA glycosylase NEIL1, efficiently recognizes and excises the highly mutagenic imidazole ring-opened AFB-deoxyguanosine adduct (AFB-Fapy-dG).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Routine dietary consumption of foods that contain aflatoxins is the second leading cause of environmental carcinogenesis worldwide. Aflatoxin-driven mutagenesis is initiated through metabolic activation of aflatoxin B (AFB) to its epoxide form that reacts with N7 guanine in DNA. The resulting AFB-N7-dG adduct undergoes either spontaneous depurination or imidazole-ring opening yielding formamidopyrimidine AFB (AFB-Fapy-dG).
View Article and Find Full Text PDFApurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic.
View Article and Find Full Text PDFEnviron Mol Mutagen
October 2014
Site-specifically modified DNAs are routinely used in the study of DNA damage-induced mutagenesis. These analyses involve the creation of DNA vectors containing a lesion at a pre-determined position, DNA replication, and detection of mutations at the target site. The final step has previously required the isolation of individual DNA clones, hybridization with radioactively labeled probes, and verification of mutations by Sanger sequencing.
View Article and Find Full Text PDFAcrolein, a mutagenic aldehyde, reacts with deoxyguanosine (dG) to form 3-(2'-deoxy-β-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a] purin-10(3H)-one (γ-OH-PdG). When placed opposite deoxycytosine (dC) in DNA, γ-OH-PdG undergoes ring-opening to the N(2)-(3-oxopropyl)-dG. Ring-opening of the adduct has been hypothesized to facilitate nonmutagenic bypass, particularly by DNA polymerases of the Y family.
View Article and Find Full Text PDFDNA exposures to electrophilic methylating agents that are commonly used during chemotherapeutic treatments cause diverse chemical modifications of nucleobases, with reaction at N7-dG being the most abundant. Although this base modification frequently results in destabilization of the glycosyl bond and spontaneous depurination, the adduct can react with hydroxide ion to yield a stable, ring-opened MeFapy-dG, and this lesion has been reported to persist in animal tissues. Results from prior in vitro replication bypass investigations of the MeFapy-dG adduct had revealed complex spectra of replication errors that differed depending on the identity of DNA polymerase and the local sequence context.
View Article and Find Full Text PDFAcrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus.
View Article and Find Full Text PDFDNA-interstrand cross-links (ICLs) can be repaired by biochemical pathways requiring DNA polymerases that are capable of translesion DNA synthesis (TLS). The anticipated function of TLS polymerases in these pathways is to insert nucleotides opposite and beyond the linkage site. The outcome of these reactions can be either error-free or mutagenic.
View Article and Find Full Text PDFThe mechanism of nanoparticle actuation by stimuli-responsive polymer brushes triggered by changes in the solution pH was discovered and investigated in detail in this study. The finding explains the high spectral sensitivity of the composite ultrathin film composed of a poly(2-vinylpyridine) (P2VP) brush that tunes the spacing between two kinds of nanoparticles-gold nanoislands immobilized on a transparent support and gold colloidal particles adsorbed on the brush. The optical response of the film relies on the phenomenon of localized surface plasmon resonances in the noble metal nanoparticles, giving rise to an extinction band in visible spectra, and a plasmon coupling between the particles and the islands that has a strong effect on the band position and intensity.
View Article and Find Full Text PDFThe repair of cis-syn cyclobutane pyrimidine dimers (CPDs) can be initiated via the base excision repair (BER) pathway, utilizing pyrimidine dimer-specific DNA glycosylase/lyase enzymes (pdgs). However, prior to incision at lesion sites, these enzymes bind to non-damaged DNAs through charge-charge interactions. Following initial binding to DNA containing multiple lesions, the enzyme incises at most of these sites prior to dissociation.
View Article and Find Full Text PDF