Publications by authors named "Minjun Feng"

Halide perovskite emitters are a groundbreaking class of optoelectronic materials possessing remarkable photophysical properties for diverse applications. In perovskite light emitting devices, they have achieved external quantum efficiencies exceeding 28%, showcasing their potential for next-generation solid-state lighting and ultra high definition displays. Furthermore, the demonstration of room temperature continuous-wave perovskite lasing underscores their potential for integrated optoelectronics.

View Article and Find Full Text PDF

Quantum cutting (QC) allows the conversion of high-energy photons into lower-energy photons, exhibiting great potential for infrared communications. Yb-doped perovskite nanocrystals can achieve an efficient QC process with extremely high photoluminescence quantum yield (PLQY) thanks to the favorable Yb incorporation in the perovskite structure. However, conventionally used oleic acid-oleylamine-based ligand pairs cause instability issues due to highly dynamic binding to surface states that have curbed their potential applications.

View Article and Find Full Text PDF

van der Waals heterojunctions based on transition-metal dichalcogenides (TMDs) offer advanced strategies for manipulating light-emitting and light-harvesting behaviors. A crucial factor determining the light-material interaction is in the band alignment at the heterojunction interface, particularly the distinctions between type-I and type-II alignments. However, altering the band alignment from one type to another without changing the constituent materials is exceptionally difficult.

View Article and Find Full Text PDF

Two-dimensional layered organic-inorganic halide perovskites have successfully spread to diverse optoelectronic applications. Nevertheless, there remain gaps in our understanding of the interactions between organic and inorganic sublattices that form the foundation of their remarkable properties. Here, we examine these interactions using pump-probe spectroscopy and ab initio molecular dynamics simulations.

View Article and Find Full Text PDF

Colloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr QDs. However, this also increases the fluorescence intermittency.

View Article and Find Full Text PDF

Layered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear.

View Article and Find Full Text PDF

Harnessing quantum confinement (QC) effects in semiconductors to retard hot carrier cooling (HCC) is an attractive approach for enabling efficient hot carrier extraction to overcome the Shockley-Queisser limit. However, there is a debate about whether halide perovskite nanocrystals (PNCs) can effectively exploit these effects. To address this, we utilized pump-probe and multipulse pump-push-probe spectroscopy to investigate HCC behavior in PNCs of varying sizes and cation compositions.

View Article and Find Full Text PDF

Carrier multiplication (CM) holds great promise to break the Shockley-Queisser limit of single junction photovoltaic cells. Despite compelling spectroscopic evidence of strong CM effects in halide perovskites, studies in actual perovskite solar cells (PSCs) are lacking. Herein, we reconcile this knowledge gap using the testbed CsFAMAPbSnI system exhibiting efficient CM with a low threshold of 2E (~500 nm) and high efficiency of 99.

View Article and Find Full Text PDF

The conventional ultrafast pump-probe spectroscopy has primarily focused on examining the formation and decay of the excited state intermediates, but it is very difficult to detect those intermediates while the formation is slow and dissipation is much fast because of the limited concentration during the intrinsic photocycle. To address this issue, a multipulse ultrafast pump-dump-probe spectroscopy was employed to generate and probe the short-lived ground state intermediates (GSIs) in an electronic push-pull pyrene derivative (). This particular derivative undergoes planarized intramolecular charge transfer (PICT) in the excited state upon initial femtosecond pulse excitation.

View Article and Find Full Text PDF

Semi-transparent perovskite solar cells (ST-PSCs) have attracted enormous attention recently due to their potential in building-integrated photovoltaic. To obtain adequate average visible transmittance (AVT), a thin perovskite is commonly employed in ST-PSCs. While the thinner perovskite layer has higher transparency, its light absorption efficiency is reduced, and the device shows lower power conversion efficiency (PCE).

View Article and Find Full Text PDF

A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein-Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics.

View Article and Find Full Text PDF

Coherent optical manipulation of exciton states provides a fascinating approach for quantum gating and ultrafast switching. However, their coherence time for incumbent semiconductors is highly susceptible to thermal decoherence and inhomogeneous broadening effects. Here, we uncover zero-field exciton quantum beating and anomalous temperature dependence of the exciton spin lifetimes in CsPbBr perovskite nanocrystals (NCs) ensembles.

View Article and Find Full Text PDF

Carrier diffusion and surface recombination are key processes influencing the performance of conventional semiconductor devices. However, the interplay of photon recycling together with these processes in halide perovskites obfuscates our understanding. Herein, we discern these inherent processes in a thin FAPbBr perovskite single crystal (PSC) utilizing a unique transient reflectance technique that allows accurate diffusion modeling with clear boundary conditions.

View Article and Find Full Text PDF

Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as "efficiency roll-off". The underlying mechanisms are presently an open question.

View Article and Find Full Text PDF

Antimony sulfoselenide (Sb (S,Se) ) is a promising photoabsorber for stable and high efficiency thin film photovoltaics (PV). The unique quasi-1D (Q1D) crystal structure gives Sb (S,Se) intriguing anisotropic optoelectronic properties, which intrinsically require the optimization of crystal growth orientation, especially for electronic devices with vertical charge transport such as solar cells. Although the efficiency of Sb (S,Se) solar cells has been improved greatly through optimizing the material quality, the fundamental issue of crystal orientation control in polycrystalline films remains unsolved, resulting in charge carrier recombination losses in the device.

View Article and Find Full Text PDF

Background: COVID-19 is the first global pandemic in more than 100 years, and at its onset, the effects were largely unknown. Immunocompromised patients, including IBD, were presumed to have higher risk.

Aims: We hypothesized patients with IBD would have higher-than-baseline anxiety, high perceived vulnerability and significant lifestyle impacts as a result of the pandemic.

View Article and Find Full Text PDF

The bismuth double perovskite CsAgBiBr has been regarded as a potential candidate for lead-free perovskite photovoltaics. A detailed study on the coherent acoustic phonon dynamics in the pure, Sb- and Tl-alloyed CsAgBiBr single crystals is performed to understand the effects of alloying on the phonon dynamics and band edge characteristics. The coherent acoustic phonon frequencies are found to be independent of the alloying, while the damping rates are highly dependent on the alloying.

View Article and Find Full Text PDF

Bismuth-based double perovskite CsAgBiBr is regarded as a potential candidate for low-toxicity, high-stability perovskite solar cells. However, its performance is far from satisfactory. Albeit being an indirect bandgap semiconductor, we observe bright emission with large bimolecular recombination coefficient (reaching 4.

View Article and Find Full Text PDF

Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the high-energy tail of the main photobleaching peak in a transient absorption spectrum with a Maxwell-Boltzmann distribution.

View Article and Find Full Text PDF

In this work, the solvation of a nitrosyl ruthenium complex, [(CH)N][RuCl(qn)(NO)] (with qn = deprotonated 8-hydroxyquinoline), which is a potential NO-releasing molecule in the bio-environment, was studied in two bio-friendly solvents, namely deuterated dimethyl sulfoxide (dDMSO) and water (DO). A blue-shifted NO stretching frequency was observed in water with respect to that in dDMSO, which was believed to be due to ligand-solvent hydrogen-bonding interactions, one N═O···D and particularly three Ru-Cl···D, that show competing effects on the NO bond length. The dynamic differences of the NO stretch in these two solvents were further revealed by transient pump-probe IR and two-dimensional IR results: faster vibrational relaxation and faster spectral diffusion (SD) were observed in DO, confirming stronger solvent-solute interaction and also faster solvent structural dynamics in DO than in DMSO.

View Article and Find Full Text PDF

Microemulsions are transparent, thermodynamically stable liquid mixtures of oil, water and surfactant. They typically exist in the form of micellar and bicontinuous structures, which appear to be equilibrium systems but are actually complex in structure and are difficult to characterize at the molecular level. In this work, potassium ferrocyanide [K4Fe(CN)6] and tungsten hexacarbonyl [W(CO)6] were chosen as two probe molecules for water and organic phases respectively to simultaneously explore the structures and dynamics of commonly prepared reverse micellar and bicontinuous microemulsion structures using aerosol OT (AOT) as the surfactant and isooctane as the oil phase.

View Article and Find Full Text PDF

Vibrational energy transfer in transition metal complexes with flexible structures in condensed phases is of central importance to catalytical chemistry processes. In this work, two molecules with different metal atoms, M(CO)Br (where M = Mn, Re), were used as model systems, and their axial and radial carbonyl stretching modes as infrared probes. The central-metal effect on intramolecular vibrational energy redistribution (IVR) in M(CO)Br was investigated in polar and nonpolar solvents.

View Article and Find Full Text PDF