The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.
View Article and Find Full Text PDFFragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.
View Article and Find Full Text PDFObjective: Multiple-level Intervertebral disc degeneration (IDD) in patients with lumbar disc herniation (LDH) is related to postoperative re-herniation and low back pain. Although many investigators believed that there is an interdependence between paraspinal muscles degeneration and IDD, few studies focused on the fatty infiltration of paraspinal muscles on single- and multiple-level IDD in patients with LDH. This study aims to investigate the difference on the fatty infiltration of paraspinal muscles between single- and multiple-levels IDD in patients with LDH.
View Article and Find Full Text PDFThe human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons.
View Article and Find Full Text PDFHigh-quality, low-cost, and rapid detection is essential for the society to reopen the economy during the critical period of transition from Coronavirus Disease 2019 (COVID-19) pandemic response to pandemic control. In addition to performing sustainable and target-driven tracking of SARS-CoV-2, conducting comprehensive surveillance of variants and multiple respiratory pathogens is also critical due to the frequency of reinfections, mutation immune escape, and the growing prevalence of the cocirculation of multiple viruses. By utilizing a 0.
View Article and Find Full Text PDFFragile X messenger ribonucleoprotein 1 protein (FMRP) binds many mRNA targets in the brain. The contribution of these targets to fragile X syndrome (FXS) and related autism spectrum disorder (ASD) remains unclear. Here, we show that FMRP deficiency leads to elevated microtubule-associated protein 1B (MAP1B) in developing human and non-human primate cortical neurons.
View Article and Find Full Text PDFMotivation: Data normalization is essential to ensure accurate inference and comparability of gene expression measures across samples or conditions. Ideally, gene expression data should be rescaled based on consistently expressed reference genes. However, to normalize biologically diverse samples, the most commonly used reference genes exhibit striking expression variability and size-factor or distribution-based normalization methods can be problematic when the amount of asymmetry in differential expression is significant.
View Article and Find Full Text PDFThe ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 is profoundly influencing the global healthcare system and people's daily lives. The high resource consumption of coronavirus disease 2019 (COVID-19) is resulting in insufficient surveillance of coinfection or resurgence of other critical respiratory epidemics, which is of public concern. To facilitate evaluation of the current coinfection situation, a microfluidic system (MAPnavi) is developed for the rapid (<40 min) and sensitive diagnosis of multiple respiratory viruses from swab samples in a fully sealed and automated manner, in which a nested-recombinase polymerase amplification and the CRISPR-based amplification system is first proposed to ensure the sensitivity and specificity.
View Article and Find Full Text PDFMissing values are a major issue in quantitative proteomics analysis. While many methods have been developed for imputing missing values in high-throughput proteomics data, a comparative assessment of imputation accuracy remains inconclusive, mainly because mechanisms contributing to true missing values are complex and existing evaluation methodologies are imperfect. Moreover, few studies have provided an outlook of future methodological development.
View Article and Find Full Text PDFHereditary hearing loss is one of the most common human neurosensory disorders, and there is a great need for early intervention methods such as genetically screening newborns. Single nucleotide polymorphisms (SNPs) are the major genetic targets for hearing-loss screening. In this study, a fully integrated SNP genotyping system was constructed to identify hereditary hearing loss-related genetic markers from human whole blood.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has emerged, rapidly spread and caused significant morbidity and mortality worldwide. There is an urgent public health need for rapid, sensitive, specific, and on-site diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, a fully integrated and portable analyzer was developed to detect SARS-CoV-2 from swab samples based on solid-phase nucleic acid extraction and reverse transcription loop-mediated isothermal amplification (RT-LAMP).
View Article and Find Full Text PDFParvalbumin interneurons (PVIs) are affected in many psychiatric disorders including schizophrenia (SCZ), however the mechanism remains unclear. FXR1, a high confident risk gene for SCZ, is indispensable but its role in the brain is largely unknown. We show that deleting FXR1 from PVIs of medial prefrontal cortex (mPFC) leads to reduced PVI excitability, impaired mPFC gamma oscillation, and SCZ-like behaviors.
View Article and Find Full Text PDFMicromachines (Basel)
March 2021
Protein biomarkers are indicators of many diseases and are commonly used for disease diagnosis and prognosis prediction in the clinic. The urgent need for point-of-care (POC) detection of protein biomarkers has promoted the development of automated and fully sealed immunoassay platforms. In this study, a portable microfluidic system was established for the POC detection of multiple protein biomarkers by combining a protein microarray for a multiplex immunoassay and a microfluidic cassette for reagent storage and liquid manipulation.
View Article and Find Full Text PDFBackground: Diabetes mellitus (DM) is a common disease that has an adverse impact on most orthopedic surgeries, and its prevalence has gradually increased in recent years. We aim to investigate the influence of DM on comorbidities and complications of patients undergoing primary total lower extremity arthroplasty.
Methods: PubMed, Embase, Cochrane Library, Medline, and Web of Science were systematically searched for relevant studies published before December 2019.
Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases.
View Article and Find Full Text PDFBackground: Vascular injury is a rare complication of femoral shaft fractures, and rupture of the deep femoral artery is more difficult to diagnose because of its anatomical location and symptoms. Despite its low incidence, deep femoral artery rupture can lead to life-threatening outcomes, such as compartment syndrome, making early identification and diagnosis critical.
Case Summary: A 45-year-old male patient was admitted to our hospital due to right lower limb trauma in a car accident, with complaints of severe pain and swelling on his right thigh.
Protein biomarkers are widely used for disease diagnosis, but the current detection methods utilized in centralized laboratories are mainly based on enzyme-linked immunosorbent assay (ELISA)-derived sandwich-type immunoassays such as chemiluminescent or electrochemiluminescent immunoassays, which suffer from long detection times and cumbersome instruments. For the point-of-care (POC) detection of protein biomarkers, various test strips for lateral flow immunoassay (LFIA) have been manufactured, but their detection sensitivities and capabilities for raw samples are limited. In this study, an enhanced centrifugation-assisted lateral flow immunoassay (ECLFIA) was established to rapidly detect protein biomarkers in whole blood with a higher sensitivity than LFIA.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
June 2020
The production of thermoset polymers is increasing globally owing to their advantageous properties, particularly when applied as composite materials. Though these materials are traditionally used in more durable, longer-lasting applications, ultimately, they become waste at the end of their usable lifetimes. Current recycling practices are not applicable to traditional thermoset waste, owing to their network structures and lack of processability.
View Article and Find Full Text PDFAntibiotic residues and illegal additives are among the most common contaminants in milk and other dairy products, and they have become essential public health concerns. To ensure the safety of milk, rapid and convenient screening methods are highly desired. Here, we integrated microarray technology into a microfluidic device to achieve rapid, sensitive, and fully automated detection of chloramphenicol, tetracyclines, enrofloxacin, cephalexin, sulfonamides, and melamine in milk on a centrifugal microfluidic platform with two rotation axes.
View Article and Find Full Text PDFThe lab-on-a-disc is a powerful microfluidic platform that skillfully takes advantage of centrifugal force to controllably drive liquids with the assistance of passive or active valves. However, the passive valves are mainly triggered by the rotation speed and can be easily influenced by the surface chemistry of the channel, while the active valves usually require a complicated fabrication or actuation procedure. In this study, a novel active valve that can be easily triggered by an electromagnet was proposed and applied on the centrifugation platform.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2020
Cells encapsulation by biomaterials has been widely studied as a strategy of building tissue construct in tissue engineering. Conventional encapsulation of cells using hydrogels often needs the polymerization process or relatively complex molding process. In this study, we developed a facile strategy for the in situ fabrication of biodegradable cell-laden starch foams.
View Article and Find Full Text PDFLateral flow immunoassay (LFIA) is widely used but is limited by its sensitivity. In this study, a novel centrifugation-assisted lateral flow immunoassay (CLFIA) was proposed that had enhanced sensitivity compared to traditional LFIA based on test strips. For CLFIA, a vaulted piece of nitrocellulose membrane was prepared and inserted into a centrifugal disc.
View Article and Find Full Text PDF