Four previously undescribed isoprenoid flavonoids (2-5) were isolated from Sophora davidii, along with five known analogues. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and absolute configurations determined by theoretical calculations, including ECD and NMR calculation. The cytotoxic effects of the isolated compounds on human HT29 colon cancer cells were evaluated using the MTT assay, compound 1 exhibited cytotoxicity against human HT29 colon cancer cells with an IC value of 8.
View Article and Find Full Text PDFEight previously undescribed diterpenoids, along with eleven previously reported analogues, were obtained from the supercritical CO extracts of Torreya grandis aril. The structures of these compounds were elucidated based on HRESIMS, NMR, ECD, and single-crystal X-ray diffraction data. In the MTT assay, compound 18 exhibited significant inhibitory effects on two human colon cancer cell lines, HT-29 and HCT 116 cells, with IC values of 7.
View Article and Find Full Text PDFSix lactone derivatives, including four α-pyrones derivatives (1-4), two α-furanone derivatives (5 and 6), were isolated from the Dendrobium pendulum. Structural elucidation of these undescribed lactone derivatives were accomplished on the basis of detailed nuclear magnetic resonance analysis, and the absolute configurations of compounds 1-4 were confirmed by electronic circular dichroism (ECD) techniques. The cytotoxic effects of isolated compounds on human breast cancer cell MDA-MB-231 were evaluated by the MTT assay.
View Article and Find Full Text PDFTo identify potential drug candidates, secondary metabolites of were performed. As a result, two previously undescribed phenanthrene derivatives with a spirolactone ring ( and ), along with four known compounds, --cinnamoyltyramine (), ---coumaroyltyramine (), --feruloyltyramine (), and moscatilin (), were isolated from . The structures of the undescribed compounds were elucidated using NMR spectroscopy, electronic circular dichroism (ECD) calculations, and extensive spectroscopic data analysis.
View Article and Find Full Text PDFTwo new sesquiterpenoids, dendroaduoid A (1) and dendroaduol (2), together with four known sesquiterpenoids were isolated from the stems of Dendrobium aduncum. Their structures were identified by HR-ESI-MS and NMR experiments, and the complete assignments of H and C NMR data for two new sesquiterpenoids were obtained by the aid of HSQC, HMBC, H- H COSY, NOESY, and ECD techniques. The cytotoxic effects of the isolated compounds on four tumor cell lines (HCT-116, HepG2, A549, and SW1990) were evaluated using MTT assay.
View Article and Find Full Text PDFThis study aimed to explore whether chronic l-lactate exposure could affect the peripheral tissues of mice and to determine the underlying pathogenesis. Herein, male C57BL/6 mice were divided into control and l-lactate groups. After l-lactate treatment for eight weeks (1 g/kg), metabolic changes in liver, kidney, muscle, and serum samples were determined by H nuclear magnetic resonance (H NMR)-based metabolomics.
View Article and Find Full Text PDFTwo previously undescribed dihydrophenanthrene derivatives ( and ) were isolated along with twelve known analogues from the whole plant of . The structures of the new compounds were elucidated on the basis of detailed spectroscopic analysis. The NMR data of known phenanthrene derivatives ( and ) were revised by 2D NMR.
View Article and Find Full Text PDFFront Cell Neurosci
January 2019
Diabetic encephalopathy (DE) is a diabetic complication characterized by alterations in cognitive function and nervous system structure. The pathogenic transition from hyperglycemia to DE is a long-term process accompanied by multiple metabolic disorders. Exploring time-dependent metabolic changes in hippocampus will facilitate our understanding of the pathogenesis of DE.
View Article and Find Full Text PDFDiabetes mellitus causes brain structure changes and cognitive decline, and it has been estimated that diabetes doubles the risk for dementia. Until now, the pathogenic mechanism of diabetes-associated cognitive decline (DACD) has remained unclear. Using metabolomics, we show that lactate levels increased over time in the hippocampus of rats with streptozotocin-induced diabetes, as compared with age-matched control rats.
View Article and Find Full Text PDFCognitive dysfunction is a central nervous system (CNS) complication of diabetes mellitus (DM) that is characterized by impaired memory and cognitive ability. An in-depth understanding of metabolic alterations in the brain associated with DM will facilitate our understanding of the pathogenesis of cognitive dysfunction. The present study used an culture of primary neurons in a high-glucose (HG) environment to investigate characteristic alterations in neuron metabolism using nuclear magnetic resonance (NMR)-based metabonomics.
View Article and Find Full Text PDFBackground/aims: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. It is therefore crucial to elucidate the characteristic metabolic changes that occur during the development of diabetes to gain an understanding the pathogenesis of this disease and identify potential drug targets involved.
Methods: 1H nuclear magnetic resonance-based metabonomics combined with HPLC measurements were used to determine the metabolic changes in isolated cardiac tissues after 5 weeks, 9 weeks, and 15 weeks in rats treated with streptozotocin.
1-deoxynojirimycin (DNJ) is a natural D-glucose analogue and has a strong physiological activity in inhibiting α-glucosidase in vivo. The antidiabetic effects of DNJ in mice or other mammals were extensively explored, but the physiological and toxic roles of DNJ in insects was seldom reported. In this study, the biological effects of DNJ were examined in midgut extracts of fourth-instar larvae of Eri silkworm (Samia cynthia ricini, Saturniidae).
View Article and Find Full Text PDFAccumulating investigations have focused on the severity of central nervous system (CNS) complications in diabetic patients. The effects of the high glucose (HG) probably attribute to the metabolic disturbances in CNS. Astrocytes, with powerful ability of metabolic regulation, play crucial roles in physiological and pathological processes in CNS.
View Article and Find Full Text PDF1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, (1)H nuclear magnetic resonance ((1)H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.
View Article and Find Full Text PDFRenal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, (1)H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively.
View Article and Find Full Text PDFBackground: Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on.
Methodology/principal Findings: Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction.
Increasing evidence has shown that the brain is a site of diabetic end-organ damage. This study investigates cerebral metabolism and the interactions between astrocytes and neurons at different stages of diabetes to identify the potential pathogenesis of diabetic encephalopathy. [1-(13)C]glucose or [2-(13)C]acetate is infused into 1- and 15-week diabetic rats, the brain extracts of which are analyzed by using (1)H and (13)C magnetic resonance spectroscopy.
View Article and Find Full Text PDF