Purpose: This study was to develop a convolutional neural network (CNN) model with a residual learning framework to predict the full-time 18F-florbetaben (18F-FBB) PET/CT images from corresponding short-time scans.
Methods: In this retrospective study, we enrolled 22 cognitively normal subjects, 20 patients with mild cognitive impairment, and 42 patients with Alzheimer disease. Twenty minutes of list-mode PET/CT data were acquired and reconstructed as the ground-truth images.