Publications by authors named "Minik Rosing"

Carbon with depleted dC (down to - 25.6‰ VPDB) found in > 3.7 billion year old metamorphic sediments from the Isua Supracrustal Belt, Southwestern Greenland, has been proposed to represent the oldest remains of life on Earth.

View Article and Find Full Text PDF

Metasedimentary rocks from Isua, West Greenland (> 3,700 million years old) contain carbonaceous compounds, compatible with a biogenic origin (Hassenkam, Andersson, Dalby, Mackenzie, & Rosing, 2017; Ohtomo, Kakegawa, Ishida, Nagase, & Rosing, 2014; Rosing, 1999). The metamorphic mineral assemblage with garnet and quartz intergrowths contains layers of carbonaceous inclusions contiguous with carbon-rich sedimentary beds in the host rock. Previous studies (Hassenkam et al.

View Article and Find Full Text PDF

Mountain regions are unusually biodiverse, with rich aggregations of small-ranged species that form centers of endemism. Mountains play an array of roles for Earth's biodiversity and affect neighboring lowlands through biotic interchange, changes in regional climate, and nutrient runoff. The high biodiversity of certain mountains reflects the interplay of multiple evolutionary mechanisms: enhanced speciation rates with distinct opportunities for coexistence and persistence of lineages, shaped by long-term climatic changes interacting with topographically dynamic landscapes.

View Article and Find Full Text PDF

In Extended Data Fig. 1 of this Letter, the map showed the field-work location incorrectly; this figure has been corrected online.

View Article and Find Full Text PDF

The Palaeoarchean supracrustal belts in Greenland contain Earth's oldest rocks and are a prime target in the search for the earliest evidence of life on Earth. However, metamorphism has largely obliterated original rock textures and compositions, posing a challenge to the preservation of biological signatures. A recent study of 3,700-million-year-old rocks of the Isua supracrustal belt in Greenland described a rare zone in which low deformation and a closed metamorphic system allowed preservation of primary sedimentary features, including putative conical and domical stromatolites (laminated accretionary structures formed by microbially mediated sedimentation).

View Article and Find Full Text PDF

DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes ancient rocks from Isua, Greenland, using a radioactive dating method (Sm-Nd chronometer) to show that the Earth's mantle began differentiating as early as 4 billion years ago.
  • Results indicate that 3.7 billion-year-old rocks exhibit differences in nickel isotope levels, suggesting that they originated from a depleted mantle formed during the Hadean eon.
  • Researchers found evidence of an enriched mantle component in 3.4 billion-year-old mafic dykes, indicating that these early-formed variations in the mantle may have persisted for billions of years.
View Article and Find Full Text PDF

Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.

View Article and Find Full Text PDF

The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth.

View Article and Find Full Text PDF

Recent high precision (142)Nd isotope measurements showed that global silicate differentiation may have occurred as early as 30-75 Myr after the Solar System formation [Bennett V, et al. (2007) Science 318:1907-1910]. This time scale is almost contemporaneous with Earth's core formation at approximately 30 Myr [Yin Q, et al.

View Article and Find Full Text PDF

Environmental niches in which life first emerged and later evolved on the Earth have undergone dramatic changes in response to evolving tectonic/geochemical cycles and to biologic interventions, as well as increases in the Sun's luminosity of about 25 to 30 per cent over the Earth's history. It has been inferred that the greenhouse effect of atmospheric CO(2) and/or CH(4) compensated for the lower solar luminosity and dictated an Archaean climate in which liquid water was stable in the hydrosphere. Here we demonstrate, however, that the mineralogy of Archaean sediments, particularly the ubiquitous presence of mixed-valence Fe(II-III) oxides (magnetite) in banded iron formations is inconsistent with such high concentrations of greenhouse gases and the metabolic constraints of extant methanogens.

View Article and Find Full Text PDF

A sheeted-dike complex within the approximately 3.8-billion-year-old Isua supracrustal belt (ISB) in southwest Greenland provides the oldest evidence of oceanic crustal accretion by spreading. The geochemistry of the dikes and associated pillow lavas demonstrates an intraoceanic island arc and mid-ocean ridge-like setting, and their oxygen isotopes suggest a hydrothermal ocean-floor-type metamorphism.

View Article and Find Full Text PDF
Early anaerobic metabolisms.

Philos Trans R Soc Lond B Biol Sci

October 2006

Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs.

View Article and Find Full Text PDF

The 176Lu to 176Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of 176Lu (lambda176Lu), as well as bulk-Earth reference parameters. A recent calibration of the lambda176Lu value calls for the presence of highly unradiogenic hafnium in terrestrial zircons with ages greater than 3.

View Article and Find Full Text PDF