Obesity is associated with fatty liver disease. Available therapies show modest efficacy, and nutraceuticals with good effectiveness and safety are largely investigated. We focused on five natural compounds, three plant phenolic compounds (carvacrol, rosmarinic acid, silybin), and two thyroid hormones (T2: 3,5-diiodo-l-thyronine; T3: 3,5,3'-triiodo-L-thyronine) as comparison, to assess their beneficial effects on two cellular models of hepatosteatosis and adipogenesis.
View Article and Find Full Text PDFSpike (S) glycoprotein is the largest structural protein of SARS-CoV-2 virus and the main one involved in anchoring of the host receptor ACE2 through the receptor binding domain (RBD). S protein secondary structure is of great interest for shedding light on various aspects, from functionality to pathogenesis, finally to spectral fingerprint for the design of optical biosensors. In this paper, the secondary structure of SARS-CoV-2 S protein and its constituting components, namely RBD, S1 and S2 regions, are investigated at serological pH by measuring their amide I infrared absorption bands through Attenuated Total Reflection Infrared (ATR-IR) spectroscopy.
View Article and Find Full Text PDFCytochrome C (cyt C), the protein involved in oxidative phosphorylation, plays several other crucial roles necessary for both cell life and death. Studying natural variants of cyt C offers the possibility to better characterize the structure-to-function relationship that modulates the different activities of this protein. Naturally mutations in human cyt C (G41S and Y48H) occur in the protein central Ω-loop and cause thrombocytopenia 4.
View Article and Find Full Text PDFThe advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory.
View Article and Find Full Text PDFCopper (Cu), with its ability to exist in various oxidation states, notably Cu(I) and Cu(II), plays a crucial role in diverse biological redox reactions. This includes its involvement in pathways associated with oxidative stress in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Transmissible Spongiform Encephalopathies. This paper offers an overview of X-ray Absorption Spectroscopy (XAS) studies designed to elucidate the interactions between Cu ions and proteins or peptides associated with these neurodegenerative diseases.
View Article and Find Full Text PDFLipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors.
View Article and Find Full Text PDFMitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3), also called extracellular regulated kinases (ERK2 and ERK1), are serine/threonine kinase activated downstream by the Ras/Raf/MEK/ERK signal transduction cascade that regulates a variety of cellular processes. A dysregulation of MAPK cascade is frequently associated to missense mutations on its protein components and may be related to many pathologies, including cancer. In this study we selected from COSMIC database a set of MAPK1 and MAPK3 somatic variants found in cancer tissues carrying missense mutations distributed all over the MAPK1 and MAPK3 sequences.
View Article and Find Full Text PDFHuman endo-lysosomes possess a class of proteins called TPC channels on their membrane, which are essential for proper cell functioning. This protein family can be functionally studied by expressing them in plant vacuoles. Inhibition of hTPC activity by naringenin, one of the main flavonoids present in the human diet, has the potential to be beneficial in severe human diseases such as solid tumor development, melanoma, and viral infections.
View Article and Find Full Text PDFTumor necrosis factor receptor-associated factor proteins (TRAFs) are trimeric proteins that play a fundamental role in signaling, acting as intermediaries between the tumor necrosis factor (TNF) receptors and the proteins that transmit the downstream signal. The monomeric subunits of all the TRAF family members share a common tridimensional structure: a C-terminal globular domain and a long coiled-coil tail characterizing the N-terminal section. In this study, the dependence of the TRAF2 dynamics on the length of its tail was analyzed .
View Article and Find Full Text PDFAmyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aβ42 fibril formation in the presence of cortisol at different relative concentrations.
View Article and Find Full Text PDFThe potential role of styrene oxide in altering the dopaminergic pathway in the ear is investigated by means of molecular docking and molecular dynamics simulations. We estimate the binding affinity of both styrene oxide and dopamine to the dopaminergic receptor DrD2 by computing the free-energy difference, ∆, between the configuration where the ligand is bound to the receptor and the situation in which it is "infinitely" far away from it. The results show that the styrene oxide has a somewhat lower affinity for binding with respect to dopamine, which, however, may not be enough to prevent exogenous high concentration styrene oxide to compete with endogenous dopamine for DrD2 binding.
View Article and Find Full Text PDFA distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets.
View Article and Find Full Text PDFDipole Strength (DS) of the amides has gained a renewed interest in chemical physics since it provides an important tool to disclose the on-site vibrational energy distributions. Apart from earlier experimental efforts on polypeptides, little is still known about DS in complex proteins. We accurately measured the Fourier Transform Infrared absorption spectra of nine proteins in water solution obtaining their Molar Extinction Coefficient in the amide I and II spectral region.
View Article and Find Full Text PDFTNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation.
View Article and Find Full Text PDFThe flavonoid naringenin (Nar), present in citrus fruits and tomatoes, has been identified as a blocker of an emerging class of human intracellular channels, namely the two-pore channel (TPC) family, whose role has been established in several diseases. Indeed, Nar was shown to be effective against neoangiogenesis, a process essential for solid tumor progression, by specifically impairing TPC activity. The goal of the present review is to illustrate the rationale that links TPC channels to the mechanism of coronavirus infection, and how their inhibition by Nar could be an efficient pharmacological strategy to fight the current pandemic plague COVID-19.
View Article and Find Full Text PDFThe oligomeric state of TRAF2 (tumor necrosis factor-receptor associated factor 2), a TNF (tumor necrosis factor) receptor-associated factor, is crucial for membrane binding and probably plays a fundamental role in regulating the protein function in vivo. In this study we have combined molecular dynamics with the protein contact network approach to characterize the interaction of the three identical subunits of TRAF2. The average structure obtained after a 225 ns simulation reveals that two clusters of different size are formed, one of which includes almost completely two subunits, while the third monomer appears to be more independent.
View Article and Find Full Text PDFThe inhibitory effect of the flavonoid naringenin on plant and human Two-Pore Channels (TPCs) was assessed by means of electrophysiological measurements. By acting on human TPC2, naringenin, was able to dampen intracellular calcium responses to VEGF in cultured human endothelial cells and to impair angiogenic activity in VEGF-containing matrigel plugs implanted in mice. Molecular docking predicts selective binding sites for naringenin in the TPC structure, thus suggesting a specific interaction between the flavonoid and the channel.
View Article and Find Full Text PDFIn the present work we illustrate the results of classical molecular dynamics simulations of model systems composed of six insulin molecules in water in the presence and in the absence of either epigallocatechin-3-gallate or melatonin molecules. For each model system, we performed three independent simulations (replicas) to study the aggregate formation dynamics and insulin interaction with epigallocatechin-3-gallate and melatonin. We find that melatonin is less stably close to insulin with respect to epigallocatechin-3-gallate, which interacts more stably with insulin molecules and mainly with insulin's chain B hydrophobic residues.
View Article and Find Full Text PDFHuman frataxin is an iron-binding protein involved in the mitochondrial iron-sulfur (Fe-S) clusters assembly, a process fundamental for the functional activity of mitochondrial proteins. Decreased level of frataxin expression is associated with the neurodegenerative disease Friedreich ataxia. Defective function of frataxin may cause defects in mitochondria, leading to increased tumorigenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
November 2018
One of the greatest merit of the use of radiopeptides in oncology is their selectivity which, however, brings about the drawback that each radiopeptide is specific for a given tumor type. To overcome this problem the direction currently taken in drug design is that of radiolabelling peptide hormones (or their analogues), relying on their intrinsic ability to bind to specific receptors in precise areas of the human body, at the cost, however, of a poor selectivity against healthy cells. We present here an extensive Molecular Dynamics study of a promising alternative inspired by the mechanism through which antimicrobial peptides interact with the negatively charged bacterial membranes.
View Article and Find Full Text PDFFibrillogenesis of monomeric human insulin in the presence or absence of (-)-epigallocatechin-3-gallate and melatonin was here investigated using a multi-technique approach. Results from Raman and Infrared spectroscopy pointed out that a high content of intermolecular β-sheet aggregates is formed after long-term incubation. However, near UV experiments, Dynamic Light Scattering, Thioflavin-T fluorescence measurements and Atomic Force Microscopy revealed that the kinetics from native-to-fibrillar state of insulin is hampered only in the presence of (-)-epigallocatechin-3-gallate.
View Article and Find Full Text PDFFar-UV Circular Dichroism experiments and Atomic Force Microscopy tomography are employed to assess the impact of β-sheet breakers on the Aβ peptide aggregation process in the presence of Cu or Zn transition metals. In this work we focus on two specific 5-amino acids long β-sheet breakers, namely the LPFFD Soto peptide, already known in the literature, and the LPFFN peptide recently designed and studied by our team. We provide evidence that both β-sheet breakers are effective in reducing the Aβ aggregation propensity, even in the presence of metal ions.
View Article and Find Full Text PDFGenome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis.
View Article and Find Full Text PDFUnder specific physico-chemical conditions β-lactoglobulin is seen to form fibrils structurally highly similar to those that are formed by the amyloid-like proteins associated with neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the present study we provide insights on the possible role that the dietary flavonoid (-)-epicatechin plays on β-lactoglobulin fibril formation. Fibril formation is induced by keeping β-lactoglobulin solutions at pH2.
View Article and Find Full Text PDFIn this work we analyze at a structural level the mechanism by which Cu(II) and Zn(II) ions compete for binding to the Aβ peptides that is involved in the etiology of Alzheimer's disease. We collected X-ray absorption spectroscopy data on samples containing Aβ with Cu and Zn at different concentration ratios. We show that the order in which metals are added to the peptide solution matters and that, when Zn is added first, it prevents Cu from binding.
View Article and Find Full Text PDF