Publications by authors named "Mini Manchanda"

Alternative pre-mRNA processing greatly increases the coding capacity of the human genome and regulatory factors involved in RNA processing play critical roles in tissue development and maintenance. Indeed, abnormal functions of RNA processing factors have been associated with a wide range of human diseases from cancer to neurodegenerative disorders. While many studies have emphasized the importance of alternative splicing (AS), recent high-throughput sequencing efforts have also allowed global surveys of alternative polyadenylation (APA).

View Article and Find Full Text PDF

Inhibition of muscleblind-like (MBNL) activity due to sequestration by microsatellite expansion RNAs is a major pathogenic event in the RNA-mediated disease myotonic dystrophy (DM). Although MBNL1 and MBNL2 bind to nascent transcripts to regulate alternative splicing during muscle and brain development, another major binding site for the MBNL protein family is the 3' untranslated region of target RNAs. Here, we report that depletion of Mbnl proteins in mouse embryo fibroblasts leads to misregulation of thousands of alternative polyadenylation events.

View Article and Find Full Text PDF

Myotonic dystrophy (DM) is a multi-systemic disease that impacts cardiac and skeletal muscle as well as the central nervous system (CNS). DM is unusual because it is an RNA-mediated disorder due to the expression of toxic microsatellite expansion RNAs that alter the activities of RNA processing factors, including the muscleblind-like (MBNL) proteins. While these mutant RNAs inhibit MBNL1 splicing activity in heart and skeletal muscles, Mbnl1 knockout mice fail to recapitulate the full-range of DM symptoms in these tissues.

View Article and Find Full Text PDF

An elevated level of homocysteine, a thiol amino acid, is associated with various complex disorders. The cellular effects of homocysteine and its precursors S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet) are, however, poorly understood. We used Saccharomyces cerevisiae as a model to understand the basis of pathogenicity induced by homocysteine and its precursors.

View Article and Find Full Text PDF

A hallmark of protective immunity during Mycobacterium tuberculosis (M. tb) infection is the regulated secretion of pro-inflammatory and regulatory cytokines. Suppressors of Cytokine Signaling (SOCS) are key regulators of cytokine secretion and function.

View Article and Find Full Text PDF